共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
借助算子半群逼近的相关理论及经典算子理论的研究方法,对算子A,An分别次生成的n阶α次积分C半群{T(t)}t≥0和{Tn(t)}t≥0,在一定条件下,当Tn(t)x逼近于T(t)x,则有Rc(λ,An)x逼近于Rc(λ,A)x,反之也成立.从而丰富了n阶α次积分C半群的研究内容. 相似文献
3.
4.
5.
研究了指数有界双参数n阶α次积分C半群的谱映射定理.利用经典算子半群理论中的方法和双参数n阶α次积分C半群的概念,讨论指数有界双参数n阶α次积分C半群与其次生成元的谱的相关性质. 相似文献
6.
在单参数n阶α次积分C半群概念的基础上,利用经典算子半群理论中的方法和单参数n阶α次积分C半群预解方程的研究方法,将单参数n阶α次积分C半群的概念推广到双参数n阶α次积分C半群,得到双参数n阶α次积分C半群概念、预解集及预解方程的性质. 相似文献
7.
逼近是算子半群理论中重要的组成部分之一.利用经典算子半群理论中的方法,并结合指数有界双参数n阶α次积分C半群的概念和Laplace型逆变换的表达式得到了指数有界双参数n阶α次积分C半群的逼近:在一定条件下,当Tn(t,s)x逼近于T(t,s)x,则有■逼近于■,反之也成立. 相似文献
9.
算子半群及其生成元之间的关系是算子半群理论的一个重要问题.在n阶α次积分C半群的基础上,给出了n阶m次积分C半群的指数公式及其证明. 相似文献
10.
n次积分C半群的扰动理论 总被引:1,自引:2,他引:1
在当C具有非稠值域时,n次积分半群与一次积分C半群的扰动理论基础上,推导出n次积分C半群的扰动理论,并在不同条件限制下证明仍然有n次积分C半群的Phillips扰动理论成立. 相似文献
11.
利用经典算子半群理论中的研究方法,基于双连续n阶α次积分C半群的生成定理,讨论了指数有界双连续n阶α次积分C半群的逼近定理。{T(t)}t≥0,{Tn(t)}t≥0分别是由A、An次生成的指数有界双连续n阶α次积分C半群,在一定条件下,可以得到Ra(λ,An) x→Ra(λ,A) x与Tn(t)x→T (t)x等价。研究结果推广了n阶α次积分C半群相关的逼近定理。 相似文献
12.
13.
利用经典算子半群理论中的方法,基于指数有界双参数n阶α次积分C群的概念,得到了指数有界双参数n阶α次积分C群的预解方程表达式。从而丰富了线性算子半群理论,拓展了对预解方程的研究。 相似文献
14.
15.
16.
17.
18.
利用指数有界的n次积分C-半群的基本性质,用两种不同的方法证明了它的指数公式。 相似文献
19.
20.