首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
设n是正整数,本文运用初等方法证明了:方程(n+1)^x+(n+1)^y=n^z没有适合x〉1的正整数解(x,y,x).  相似文献   

2.
指数型丢番图方程(na)~x+(nb)~y=(nc)~z是数论领域中非常典型的一类不定方程。设a,b,c为两两互素的正整数且满足a~2+b~2=c~2,即当a,b,c为本原商高数时,该方程就可以写为[n(a~2-b~2)]~x+[n(2ab)]~y=[n(a~2+b~2)]~z。由于该类丢番图方程与编码理论、群论以及组合论都有着紧密的联系,因此一直以来都备受广大数学爱好者的青睐。1956年,Je'sm anowicz猜想该方程仅有正整数解(x,y,z)=(2,2,2),但迄今为止这类方程还未得到彻底的解决。本文主要运用奇偶分析法、简单同余法、以及二次剩余理论等方法,证明了:对任意的正整数n,丢番图方程(24n)~x+(143n)~y=(145n)~z仅有正整数解(x,y,z)=(2,2,2),即证明了:当(a,b,c)=(24,143,145)时,Je'sm anowicz猜想成立。  相似文献   

3.
设n是正整数.运用Gel’fond-Baker方法证明了当n>3·1015时,方程nx+(n+2)y=(n+1)z无正整数解(x,y,z).  相似文献   

4.
本文运用初等方法给出了方程x^3+y^3=(x+y)^2。的全部整数解(x,y).  相似文献   

5.
证明了方程n^x+(n+1)=(n+2)^z没有正整数解(x,z),其中n是大于1的正整数.  相似文献   

6.
1956年Jes'manowícz猜测Diophantine方程(na)x+(nb)y=(nc)z仅有正整数解(x,y,z)=(2,2,2),其中a,b,c是两两互素的正整数且满足a2+b2=c2。利用初等方法证明了对任意的正整数n,当a=7·13,b=22·32·5·23,c=41·101时,Jes'manowícz猜想成立。  相似文献   

7.
设c是给定的正整数.本文证明了:方程x!=y!z!仅有有限多组解(x,y,z)适合,而且这些解都满足x<max(8e10,e2c).  相似文献   

8.
研究了Jes'manowicz提出的关于丢番图方程(na)x+(nb)y=(nc)z的解的猜想.利用数论中的一些方法,得到了丢番图方程(19 n)x+(180 n)y=(181 n)z和(837 n)x+(116 n)y=(845n)z的所有整数解,证明了Jes'manowicz猜想在这两种情形下的正确性.  相似文献   

9.
设a,b,c为两两互素的正整数且满足a2+b2=c2.1956年,Je?manowicz猜测丢番图方程(na)x+(nb)y=(nc)z仅有正整数解x=y=z=2.此利用初等方法证明了:对于任意的正整数n,除去x=y=z=2外,丢番图方程(56n)x+(33n)y=(65n)z,(80n)x+(39n)y=(89n)z和(20n)x+(99n)y=(101n)z无其他的正整数解,即当(a,b,c)=(56,33,65),(80,39,89)和(20,99,101)时,Je?manowicz猜想成立.  相似文献   

10.
设n是正整数,运用初等方法证明了丢番图方程(16n)x+(63n)y=(65n)z仅有整数解(x,y,z)=(2,2,2),从而得到了Jesmanowicz猜想在该情形下成立.  相似文献   

11.
12.
运用初等方法,证明Diophantine方程x3-1=61y2仅有整数解(x,±y)=(1,0),(13,6).  相似文献   

13.
利用初等的方法证明了对任意的正整数n,丢番图方程(48n)~x+(55n)~y=(73n)~z仅有正整数解(x,y,z)=(2,2,2),从而得知Jesmanowicz猜想在该情形下成立。  相似文献   

14.
设Sm(n)是第m个n角数,给出了当n-2为平方数时方程Sx(n)=Sy(3)的全部解的通式,并证明了当n-2为非平方数时该方程有无穷多组正整数解.  相似文献   

15.
设D是无平方因子正整数.证明了:当D不能被形如6k 1之形素数整除时,如果D含有素因数p适合P=5(mod 12),则方程x^3 3^3n=Dy^2没有适合god(x,y)=1的正整数解(x,y,n).  相似文献   

16.
设D是不能被6k 1之形素数整除的无平方因子正奇数时,论文证明了:如果D≡1,3(mod8)或D有适合p≡5(mod12)的素因数p,则方程2332Dyxn=-没有适合n>1的正整数解(x,y,n).  相似文献   

17.
利用数论方法得到了丢番图(x 1)2 (x 2)2 … (x n)2=y2有正整数解的必要充分条件,证明了当n=25时,无正整数解,当n=49时,仅有正整数解(x,y)=(24,357),当n=121时仅有正整数解(x,y)=(243,3366),同时证明了n=2,11时必有无穷多组正整数解,并给出了无穷多解的通解公式.  相似文献   

18.
设p是奇素数,运用初等数论方法证明了:如果P=16k4+1,这里k为正奇数,则方程y2=px(x2+2)无正整数解(x,y).  相似文献   

19.
设p是6k+1型的奇素数,运用同余式、平方剩余和Pell方程的解等初等方法研究了Diophantine万程x3+1=Dy2(D =p,3p)的正整数解的情况.  相似文献   

20.
目的研究不定方程x3±8=Dy2的可解性问题。方法利用初等及代数方法。结果设D是不含3和6k+1之形素因数的无平方因子正整数。当D>5时,如果D的素因数p都满足p≡1,3(mod 8)或者p≡5,7(mod 8),则方程x3±8=Dy2没有适合gcd(x,y)=1的正整数解(x,y)。结论部分地解决了该方程的可解性问题。即对某些特殊D,该方程无解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号