共查询到18条相似文献,搜索用时 78 毫秒
1.
电子换向器的表面缺陷形状各异、缺陷与背景差异较小,同时还存在表面杂质干扰缺陷分割结果等问题,导致电子换向器缺陷难以精细分割。本文提出一种基于多尺度融合和残差分离卷积的改进U-Net缺陷分割方法。将不同尺度的图像输入编码模块便于网络模型提取多尺度下缺陷特征信息,并构建残差分离卷积模块,在增大感受野的同时保留细节特征。将多尺度的输出图像放大到相同尺度并融合作为最终输出,实现特征信息语义和位置的信息互补,从而提高网络的分割精度。在公开的KolektorSDD数据集上的实验结果表明,该方法的相似性系数和精确率分别达到97.3%与97.8%,缺陷分割效果相比于SegNet、FCN-8S等经典分割网络更加优秀,能够更加准确地识别细小缺陷。 相似文献
2.
为提高脑肿瘤磁共振图像分割精度,在U-Net图像分割方法基础上,提出了一种引入注意力机制的深度学习改进模型,利用全局上下文信息,使模型重点关注需要分割区域的特征,并抑制无关的特征,以此提高模型的分割精度,同时引入残差块来加速模型的训练.实验结果表明:提出的改进模型相比U-Net方法,脑肿瘤MRI图像的分割精度有了提高,... 相似文献
3.
息肉图像的分割在临床医疗和计算机辅助诊断技术等领域具有广泛的研究和应用价值,但是就目前的研究和应用需求来看,准确的息肉分割仍然是一项挑战. 针对内窥镜息肉图像中出现的息肉与黏膜边界不清晰、息肉的大小和形状差异较大等影响分割质量的问题,该文提出了一种基于U-Net改进的息肉图像分割算法(SBF-Net). 首先,在U-Net架构上引入了边界特征加强模块(BFEM),考虑到息肉边界和内部区域的关键线索,该模块利用编码器高层特征生成额外的边界补充信息,在解码器阶段进行融合,提升模型处理边界特征的能力. 其次,该模型的解码器(GFBD)采用了从上至下逐步融合特征的方式,将编码器阶段的输出特征经过局部加强(LE)模块之后再逐步融合边界特征,这种多尺度特征融合方式有效缓解了编码器和解码器之间的语义差距问题. 最后,在后处理阶段采用测试时数据增强(TTA)来进一步对分割结果进行细化. 该模型在CVC-300、CVC-ClinicDB、Kvasir-SEG、CVC-ColonDB和ETIS-LaribPolypDB等5个公开数据集上进行了对比实验和消融实验,实验结果证明了该文所改进方法的有效性,并在内窥镜息肉图像上表现出更好的分割性能和更强的稳定性,为息肉图像的处理和分析提供了新的参考. 相似文献
4.
针对普通卷积运算无法关注重点区域、编码器无法有效提取全局上下文信息、简单的跳跃连接无法捕获显著特征,以及易导致分割图像分辨率降低、重要细节丢失、小物体信息无法被准确捕获等问题,提出基于膨胀率注意力机制的UNet(DRA-UNet)模型,并发展了基于此模型的超声图像分割方法.在UNet模型的基础上,引入膨胀率注意门和多尺度卷积(ConvMulti)模块.膨胀率注意门模块利用空洞卷积能得到更大的感受野,将编码器语义位置的局部区域像素联合到上采样区域,可以实现更加高效的跳跃连接.ConvMulti模块用来获取更加详细的高层特征信息,使编码器功能更强大.实验结果表明:本模型可以有效抑制图像噪声,大幅提高特征的表达能力,具有很强的鲁棒性,相比六种经典分割方法,所提出方法在交并比、F1分数和精度指标下分别达到72.25%,83.89%和97.47%. 相似文献
5.
基于CT血管造影(computed tomography angiography,CTA)图像的冠状动脉自动分割的挑战在于冠状动脉结构复杂、前背景分布严重不平衡,分割时易受冠状静脉和其他组织的干扰.提出了一种两阶段的冠状动脉分割算法,第一阶段采用具有密集特征提取和残差特征修正能力的3D DRU-Net进行分割,保证分割的召回率;在第二阶段提出2D双编码多特征融合U-Net(2D DEMFU-Net)进行细分割,先对原始图像和第一阶段分割结果分别进行特征提取,再采用密集跳跃连接融合两个分支上的多层次语义特征,进一步提高分割准确性.实验结果表明,提出的两阶段分割算法在CortArt2020数据集上的Dice相似系数、召回率和精确度分别优于3D U-Net网络3.83%,5.31%和2.23%. 相似文献
6.
针对泡沫图像的高度复杂性导致其难以被准确分割的难题,本文提出了一种新的I-Attention U-Net网络用于泡沫图像分割.该算法以U-Net网络作为主干网络,使用Inception模块替换第一卷积池化层来提取泡沫图像的多尺度、多层次浅层特征信息;引入金字塔池化模块,通过对不同尺度的特征图求和来提升分割效果;并对自注意力门控单元进行改进,使注意力单元更适合于浮选泡沫图像的分割,强化深层特征的重要性并对不同尺寸的泡沫边界进行强化学习.研究结果表明:本文所提出算法的Jaccard系数为91.73%,Dice系数为95.66%.与同类其他分割算法结果相比,Jaccard系数及Dice系数分别提高了1.59%、0.88%.该模型能够较好地对锌浮选泡沫图像进行分割,解决欠分割与过分割的问题,为后续的泡沫特征提取奠定基础.此外,该方法检测时间和模型参数少,具备可以部署在工业现场计算机的能力,有一定的实际应用价值. 相似文献
7.
针对U-Net图像分割在下采样过程中会丢失过多信息且在上采样过程恢复效果不佳,从而导致图像分割精度降低的缺陷,提出了一种基于多层次自注意力机制的U-Net图像分割算法。该多层次自注意力机制在每一层上采样层前均嵌入自注意力模块,将上采样层的输入与缩放的原图拼接后处理成模板图,再与原本的输入信息融合后输出到上采样层。该算法不仅能通过拼接原图的自注意力模块进一步提供更多细节信息,还能利用上采样层的特征选择功能减少拼接原图带来的背景噪音,提高模型的分割精度。最后,在PASCAL VOC数据集和DeepFashion2数据集的基础上进行了人体分割和服装分割实验。实验结果 证明,该方法 能较好地改善图像的分割性能,从而证明了其正确性和有效性。 相似文献
8.
针对乳腺钼靶图像中肿块体积小且常被致密组织掩盖导致肿块分割精度较低的问题,提出一种基于复合加权损失函数的U型对称残差语义分割模型SRes-Unet:首先将含有残差结构的卷积模块嵌入U型网络架构中,提升模型整体的特征提取能力;其次,为了解决乳腺图像中因背景较大造成像素类别严重不平衡问题,利用复合型wBCE_DiceLos... 相似文献
9.
由于山体坡度、光照角度、传感器成像角度等因素,遥感图像中的山体阴影影响了冰川识别的精度.现有方法一般是先去除阴影再进行冰川识别,既繁琐又可能破坏图像的光谱信息.本文在U-Net框架中集成金字塔池化模块以增强多尺度特征提取能力,提出了一种U-PSP-Net结构的卷积神经网络,可以实现阴影区冰川识别.在自制的含阴影冰川数据集上进行验证,与PSP-Net、SegNet和U-Net的性能比较表明,提出的U-PSP-Net的平均像素精度为95.84%,平均交并比(IoU)为92.79%.与U-Net相比,分别提升了0.61%和0.92%;与PSP-Net和SegNet相比分别提高了1.41%、2.54%和2.85%、2.86%.以上结果证明了神经网络结构在含阴影遥感影像中识别冰川的可行性和有效性. 相似文献
10.
针对染色体识别的难题,提出一种基于残差U-Net网络的染色体图像分割方法.以残差网络和U-Net网络为基础简化深层网络的训练,利用丰富的跳跃连接促进信息传播;通过将U-Net网络底层的卷积层替换成不同尺度的空洞卷积,保持特征空间分辨率不变的同时扩大特征感受野,实现多尺度感受野提取图像特征的同时减少特性信息的丢失;压缩路... 相似文献
11.
12.
如何快速、高效、准确地像素级分割混凝土表面裂缝是当前研究的热点问题之一.在混凝土表面裂缝图像中裂缝面积远远小于正常路面面积,造成现有方法在这种正负样本分布不均问题中无法有效学习裂缝特征,最终分割效果较差.提出了一种将Focal损失与活动轮廓模型相结合的新损失函数,针对裂缝面积较小且连续分布的特点,通过Focal损失加强... 相似文献
13.
针对现有织物疵点图像分割方法对光照不均匀敏感的问题,提出了一种基于局部熵和变异度的织物疵点图像分割方法。首先对织物图像进行局部熵和变异度计算,提取疵点的类边缘和区域信息;然后基于人工神经网络脉冲耦合(PCNN )的区域生长法分割织物疵点图像。通过对T ILDA数据库中的疵点图像和基于线阵CCD在线检测的织物疵点图像进行测试,并与已有的相关方法进行对比实验和评价。结果表明,该方法不仅能有效地抑制光照不均匀和复杂背景干扰的影响,而且分割质量有了明显改进。 相似文献
14.
基于图像分割的钢板表面缺陷识别 总被引:1,自引:0,他引:1
钢板的表面缺陷是影响钢板质量的主要因素,通过改进轧制工艺可以减少缺陷发生外,及时检测出钢板的表面缺陷也非常重要.对于钢板表面缺陷的检测,需要获取图像,然后对图像进行初步处理,重要的步骤就是对缺陷进行分割.基于图像灰度信息的不同,本文采用了两种图像分割模型(C-V模型和H-T-B模型),当图像的灰度信息均匀时,采用C-V模型对图像进行分割;当图像的灰度信息不均匀时,则采用H-T-B模型对图像进行分割.通过两种模型的组合应用可以对钢板的各类表面缺陷进行识别,获取缺陷区域,有利于提高钢板生产质量. 相似文献
15.
医学图像分割是图像处理的重要环节,而细胞核分割结果是病理学家进行癌症分类和评级的重要依据,提高其分割的准确率一直是研究的热点。但由于同器官的不同细胞核存在形态可能不一样、细胞之间相互重叠、细胞边界不清楚等现象,导致细胞核图像难以准确分割。为提高相互接触和重叠细胞核分割的准确性和精确率,本研究提出一种新型的细胞核分割网络模型。该模型首先是对原始细胞图进行ZCA白化预处理,并基于经典的U-Net网络结构,通过U-Net和ResNet残差模块进行训练,使用Batch Normalization方法实现数据归一化处理,解决训练过程中梯度震荡问题。在MoNuSeg和ISBI2018Cell两个数据集上的实验结果表明,本研究所提出的模型的分割准确率较高,分割出的细胞没有出现细胞核大面积粘连的现象,细胞核轮廓更加清晰。本研究所提的分割网络基于经典的U-Net网络结构,通过构造ResNet残差模块实现对细胞核上下文特征的提取,同时在残差模块使用Batch Normalization使得梯度的传输更加便捷,减少了训练时间,而且在分割相互接触的细胞核时,具有精确定位和准确分割的能力,是一种有效的细胞核分割方法。 相似文献
16.
在遗传算法基础上的自动阈值选取方法 总被引:3,自引:5,他引:3
将遗传算法用于图像分割.利用遗传算法自动在搜索空间内快速寻优的特点确定阈值,对图像进行分割.实验结果表明该方法具有较高的收敛速度和良好的分割质量. 相似文献
17.
提出一种基于形态学理论的红外热像分割方法,用于工件表面缺陷的自动检测。首先在含缺陷钢制试件红外热成像检测试验的基础上,对工件的红外热像进行灰度化、高斯高通滤波、对数变换和二值化等方法相结合的增强处理;然后采用形态学方法,基于缺陷的空间连续性和缺陷与噪声的尺寸差别,设定连通分量所含像素数的阈值,最终实现红外热像的有效分割。结果表明,新的红外热像处理方法可以实现缺陷位置和形状的精确检测,可作为含缺陷部件的红外检测和自动识别手段。 相似文献
18.
提出了一种基于改进U-Net(M-Net)模型的电磁逆散射算法.M-Net模型主要由多尺度输入层、U型卷积神经网络(CNN)、多尺度均值输出层组成.将散射场数据作为网络输入,能够在保证计算精度与计算效率的同时,减少人工计算工作量.以二维电介质为重构目标的仿真实验表明:与U-Net模型对比,应用M-Net模型求解电磁逆散射问题较为高效,输出结果误差更小. 相似文献