首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为将Lehmer同余式的模从素数的平方推广到任意整数的平方,Cai等(CAI T X, FU X D, ZHOU X. Acta Aritmetica, 2007,130(3):203-214.)定义了广义欧拉函数φe(n),给出了e=3,4,6时广义欧拉函数φe(n)的计算公式.最近Zhu等(ZHU C Z, LIAO Q Y. arXiv:2105.10870v1,2021.)确定了e=5时φe(n)的准确计算公式.利用初等的方法和技巧,研究方程φ5(n)=2(ω(n))的可解性,确定其全部正整数解.  相似文献   

2.
利用广义欧拉函数的性质和初等的方法与技巧,研究e∈{2,3,4,6}时,方程φe(n)=p tω(n)(p为奇素数)的可解性,给出其部分正整数解及无解的几个充分条件.  相似文献   

3.
利用广义欧拉函数的性质和初等的方法与技巧,研究e∈{2,3,4,6}时,方程φ_e(n)=2~(tω(n))的可解性,给出其部分正整数解.  相似文献   

4.
5.
设t∈N,n∈Z+,其中N和Z+分别是所有非负整数集合和所有正整数集合,利用欧拉函数φ(n)、广义欧拉函数φ2(n)、Smarandache LCM函数SL(n)和Smarandache函数S(n)的性质以及初等数论的方法,得到了方程tφ(n)+φ2(n)=S(SL(n13))只在t=0、1、2、3、4、5、7、10、13、15时有正整数解n及方程tφ(n)+φ2(n)=S(SL(n18))只在t=0、1、3、6、7、9、14、18、19时有正整数解n,并给出了这两个方程的所有正整数解n。  相似文献   

6.
设n是一正整数,讨论了广义Euler函数方程φ_6(n)=2~(ω(n))的可解性,基于初等方法获得了其所有的16个解.  相似文献   

7.
设n、d为正整数,且d|n,利用φ6(n)的准确计算公式及初等的方法和技巧,对一类特殊正整数n,在文献(张四保.西南大学学报(自然科学版),2019,41(12):50-56.)的基础上补充了方程φ6(n)=n/d的部分正整数解(n, d).  相似文献   

8.
设n,e>1均为正整数,利用初等的方法和技巧,以及Smarandache LCM函数和广义Euler函数的基本性质,讨论e∈{2,3,4,6}或e|φ(n)时,数论函数方程SL(n)=φe(n)的可解性,并给出该方程全部的正整数解.  相似文献   

9.
10.
利用初等数论的方法,研究了四元欧拉函数方程φ(abcd)=φ(a)+φ(b)+2[φ(c)+φ(d)]的正整数解问题,并得到其全部16组解。  相似文献   

11.
研究了方程φ(abcd)=φ(a)+2φ(b)+3φ(c)+4φ(d)-6的可解性问题,φ(n)定义为欧拉函数。利用欧拉函数的性质和初等数论的方法,得到了该方程的所有正整数解。  相似文献   

12.
基于广义欧拉函数φ_e(n)的计算公式,利用初等方法和技巧给出e∈{p~t,pq}时,方程Z(n)=φ_e(SL(n))没有正整数解的几个充分条件,其中p、q是不同的素数,t为正整数.最后对任意的正整数e,完全确定方程Z(n)=φ_e(SL(n))的全部正整数解.  相似文献   

13.
14.
用初等方法完全解决了数论函数方程SL(nk)=φ(n)(k=1,2,3,…)的正整数解问题,即SL(nk)=φ(n)(k=1,2,3,…)有解当且仅当n=1.  相似文献   

15.
目的研究欧拉函数方程φ(ab)=15φ(a)+17φ(b)正整数解的问题,其中a,b为不小于2的正整数。方法利用初等数论方法和欧拉函数的性质。结果与结论得到该方程所有80组正整数解,并解决了张四保等在文献中(张四保,席小忠.有关方程φ(ab)=k(φ(a)+φ(b))的正整数解[J].南京师大学报(自然科学版),2016,39(1):41-47.)所提出的一个数学问题。  相似文献   

16.
利用初等数论、组合分析以及C++程序对方程φ(n)=S(n^10)进行讨论,证明了该方程仅有正整数解n=1,这里对于任意正整数n,φ(n)和S(n)分别表示关于n的Euler函数和Smaran-dache函数。  相似文献   

17.
设φ(m)为欧拉函数,探讨了方程φ(ab)=2k(φ(a)+φ(b))的正整数解问题.当k=2时,利用初等方法给出了该方程的所有正整数解.进而,对任意正整数k,给出了方程的5个正整数解:(a,b)=(3×2k-1,3×2k),(2k+1,5×2k-1),(2k+1,3×2k),(5×2k-1,3×2k),(2k+1,2k+1).对任意正整数k≥2,给出了方程的2个正整数解:(a,b)=(7×2k-2,13×2k-2),(9×2k-2,13×2k-2).  相似文献   

18.
设N为正整数,φ(N)为Euler函数.讨论了方程φ(xy)=7(φ(x)+φ(y))的可解性问题,利用初等方法给出了其全部的正整数解.  相似文献   

19.
设φ(n)为欧拉函数。本文研究欧拉函数方程φ(abc)=Kφ(a)φ(b)+Nφ(c)的可解性问题,其中N是偶数.利用初等方法给出方程在K=2,N=8时的全部正整数解。  相似文献   

20.
讨论了方程φ(φ(φ(x)))=2的正整数解问题,利用初等方法给出了方程的全部17个正整数解,其中φ(x)为Euler函数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号