共查询到20条相似文献,搜索用时 11 毫秒
1.
提出了一种基于双权值神经网络的非特定人连续语音识别的新算法.这种算法可以不经过端点检测和分割,构建连续语音中各不同音节的特征空间覆盖区,可以避免因分割错误而带来的错误识别.通过实验得到了较为满意的识别结果. 相似文献
2.
基于神经网络的语音识别研究 总被引:3,自引:0,他引:3
由于具有良好的抽象分类特性,神经网络现已应用于语音识别系统的研究和开发,并成为解决识别相关问题的有效工具.为解决一般语音识别系统准确率较低的问题,本文分别给出了由循环神经网络(RNN)和多层感知器(MLP)组成识别模块的两种语音识别系统,并对二者识别的准确性进行了比较.介绍了特征提取模块的主要工作步骤并讨论了组成识别模块的上述两种神经网络结构.其中,特征提取模块利用线性预测编码(LPC)倒谱编码器,把输入语音翻译成LPC倒谱空间中的曲线;而识别模块完成对某个特征空间曲线之间的联系和单词的识别.实验结果表明,MLP方法准确率高于RNN方法,而RNN方法准确率可达85%. 相似文献
3.
基于卷积神经网络的连续语音识别 总被引:3,自引:0,他引:3
在语音识别中,卷积神经网络( convolutional neural networks,CNNs)相比于目前广泛使用的深层神经网络( deep neural network,DNNs),能在保证性能的同时,大大压缩模型的尺寸。本文深入分析了卷积神经网络中卷积层和聚合层的不同结构对识别性能的影响情况,并与目前广泛使用的深层神经网络模型进行了对比。在标准语音识别库TIMIT以及大词表非特定人电话自然口语对话数据库上的实验结果证明,相比传统深层神经网络模型,卷积神经网络明显降低模型规模的同时,识别性能更好,且泛化能力更强。 相似文献
4.
顾明亮 《徐州师范大学学报(自然科学版)》1998,(2)
根据声道模型与AR模型的对应关系,提出一种可用于神经网络语音识别的新特征———语音信号的全局时频特征,从整体上描述LPC倒谱系数的变化规律.其特点是:(1)特征长度固定,为传统的静态神经网络应用于语音识别创造了良好条件;(2)与其他语音识别系统所用的神经网络相比,新特征极大地降低了神经网络的规模及训练时间;(3)基于新特征的系统的识别性能明显优于传统的HMM方法及GMDS算法. 相似文献
5.
针对语音情感识别过程中特征不充分的问题,提出了约束式双通道模型,从全局和局部两方面充分挖掘特征所包含的情感信息,从而提高情感识别率.通道1是针对语音特征的全局信息,通过改进门控循环单元,构建了BAGRU(bidirectional attention gate recurrent unit)模型,提高了语音特征之间的相关性;通道2是针对语音特征的局部信息,卷积神经网络与对抗训练结合,避免了局部信息相互干扰.通过双通道融合模型,根据通道特征重要程度生成不同权重,同时引入正交约束,解决了融合时产生特征冗余的问题.研究结果表明,在IEMOCAP和EMO-DB情感语料库上分别达到了62.83%和82.19%的识别精度,表现出了良好性能. 相似文献
6.
荣蓉 《山东理工大学学报:自然科学版》2005,19(3):49-52
介绍了采用人工神经网络,特别是概率神经网络(PNN)技术进行语音识别的原理.提出了一类基于概率神经网络的解决元音识别问题的模型,并且通过一个试验,研究了用于语音识别的PNN模型中的参数设置.试验表明,该模型对于元音的识别具有较好的识别率. 相似文献
7.
根据语音信号的“可视”特点,提出了一种基于简化脉冲耦合神经网络(PCNN)实现孤立词语音识别的方法。将语谱图输入到PCNN中得到相应的时间序列标识,作为语音信号的特征参数,然后通过模板匹配法和概率神经网络(PNN)相结合的方法实现语音分类识别。仿真结果表明,该方法能够达到较高的语音识别率。 相似文献
8.
为了提高人工神经网络处理动态信号能力 ,在时延神经网络 ( TDNN )和卷积神经网络 ( CNN)的基础上 ,针对孤立音节的特点 ,提出了一个新的网络结构 ,研究了其学习算法。新网络在进一步改进后用于汉语孤立数码语音识别 ,对特定人和非特定人任务 ,分别达到了 97.7%和 95 .6%的正确识别率 (无拒识 ) ,其性能远远高于多层前向感知机( ML P)和时延神经网络 ,与传统的隐马尔科夫模型 ( HMM)方法是可以相比的。 相似文献
9.
提出一种基于径向基函数神经网络的改进聚类方法,并将此改进的神经网络应用于语音识别领域,建立一个非特定人的孤立词语音识别系统.此聚类方法采取有监督的学习方式,将训练样本的形心作为隐节点的质心,训练样本的分类数作为隐节点的个数.利用该方法对小词表汉语孤立词进行语音识别.结果表明,采用此算法的径向基函数的神经网络具有更好的分类能力,训练速度和识别率均优于传统的径向基函数网络. 相似文献
10.
提出了一种新颖的语音情感识别结构,从声音文件中提取梅尔频率倒谱系数(Melscale frequency cepstral coefficients,MFCCs)、线性预测倒谱系数(linear predictive cepstral coefficients,LPCCs)、色度图、梅尔尺度频谱图、Tonnetz表示和频谱对比度特征,并将其作为一维卷积神经网络(convolutional neural network,CNN)的输入.构建由一维卷积层、Dropout层、批标准化层、权重池化层、全连接层和激活层组成的网络,并使用Ryerson情感说话/歌唱视听(Ryerson audio-visual database of emotional speech and song,RAVDESS)数据集、柏林语音数据集(Berlin emotional database,EMO-DB)、交互式情绪二元运动捕捉(interactive emotional dyadic motion capture,IEMOCAP)数据集这3个数据集的样本来识别情感.为提高分类精度,利用增量方法修改初始模型.为... 相似文献
11.
介绍了径向基函数神经网络的原理、训练算法,并建立了RBF神经网络的语音情感识别的模型。在实验中比较了BP神经网络与RBF神经网络分别用于语音情感识别识别率,RBF神经网络的平均识别率高于BP神经网络3%。结果表明,基于RBF神经网络的语音情感识别方法的有效性。 相似文献
12.
语音情感识别是人机交互的重要方向,可广泛应用于人机交互和呼叫中心等领域,有很大应用价值。近年来,深度神经网络在识别情感方面取得了巨大成功,但现有方法对高层语音特征提取会丢失大量原始信息并且识别准确率不高,本文提出了一种新的语音情感识别方法,由卷积神经网络从原始信号中提取特征,并在其堆叠一个2层长短时记忆神经网络,最终识别准确率达到91.74%,本文方法显著优于基于EMO-DB数据集等其他方法。 相似文献
13.
论述了基于神经网络模型的特定人汉语语音识别,并建立了一基于3层BP神经网络的汉语语音识别系统,对汉语10个数字(1 ̄10)进行识别实验,获得了较满意的识别结果。 相似文献
14.
为解决使用语音信号准确识别动物以保护和研究野生动物的问题,提出一种全连接算法与稀疏连接算法相结合的全卷积神经网络(FCNN: Fully Convolutional Neural Network),用于语音的自动识别.利用全连接算法提取更多的组合特征,稀疏连接算法筛选重要特征可加快收敛速度.同时给出了具体的模型结构及算... 相似文献
15.
为了解决语音识别中由网络加深导致的低层特征消失、参数量大及网络训练困难的问题,基于Inception V3网络的非对称卷积思想,提出了一种改进的密集连接卷积神经网络(densely connected convolutional neural networks, DenseNet)模型。根据语音识别的长时相关性,通过密集连接块建立起不同层之间的连接关系,从而保存低层特征、加强特征传播;为了得到尺度更丰富的声学特征,将卷积核的范围进行扩大;利用非对称卷积思想分解卷积核,以减少参数量。实验结果表明,相较经典深度残差卷积神经网络模型和原始DenseNet模型,提出的模型在THCHS30数据集上的语音识别性能更好,在保证识别率的情况下,还减少了网络参数量,提高了模型训练效率。 相似文献
16.
17.
基于混沌神经网络的语音识别方法 总被引:4,自引:0,他引:4
基于语音信号的时变特性,研究了神经网络语音识别的方法.把混沌特性引入到神经元,构造了一种新的多层混沌神经网络结构,同时推导了相应的学习算法.把这种混沌神经网络用于语音识别,并与常用的神经网络语音识别方法作了比较.实验结果表明,混沌神经网络方法的平均识别率要高于同等条件下常用神经网络方法的识别率. 相似文献
18.
目前说话人、环境及发音多样性仍是语音识别声学建模中需解决的主要难题,为了克服这些不利因素的影响,本文将经过三层结构优化后的卷积神经网络应用于语音识别,利用卷积神经网络的卷积不变性克服语音信号的多样性,采用更符合生物神经元特性的新型激活函数改进卷积层缓解梯度消失的问题;利用中间池化方法改进池化层、减小特征提取误差,使用卷... 相似文献
19.
基于覆盖的神经网络集成在语音识别中的应用 总被引:3,自引:0,他引:3
神经网络集成通过训练多个神经网络并将各网络的结论进行合成,从而得到最终结果.集成可以显著的提高学习系统的泛化能力.讨论了基于覆盖思想而设计的神经网络集成方法,并将其应用于汉语孤立数码语音识别系统中,通过在集成过程中加入基于覆盖思想的控制算法降低系统的泛化误差,从而使系统的识别效果有了进一步的提高. 相似文献
20.
赵群 《大庆师范学院学报》2014,(6):1-4
蚁群优化(Ant Colony Optimization,ACO)算法是根据解决不同优化问题的多个蚂蚁算法所归纳出的解决复杂的组合优化问题的一个一般框架。本文首先研究ACO算法的原理及其结构框架,在此基础上,引入蚁群优化算法进行小波神经网络的训练,对ACO训练小波神经网络步骤和方法进行了研究。并与BP算法、遗传算法、模拟退火算法进行性能比较,将各种方法训练的小波神经网络用于噪声环境下的语音识别。仿真结果表明,基于ACO算法训练的神经网络在收敛速度上更具有优势,能够获得较小的均方误差值,对于非特定人噪声环境下的语音识别的正确率达到96%,是一种有效的语音识别方法。 相似文献