共查询到10条相似文献,搜索用时 0 毫秒
1.
Fe基软磁纳米微晶磁致电阻抗效应的研究 总被引:9,自引:2,他引:9
近年来,发现由Fe,Co,Ni和Cr,Ag,Cu所组成的二元复合膜和颗粒膜具有巨磁电阻效应,预期它在磁记录、磁传感器等方面有潜在的应用前景,引起各国科学家的广泛兴趣.但从目前的研究情况看,在很多情况下这些薄膜还需要有强磁场和低温才能显示出显著的效应.然而,最近,由Mohri等人从Co基非晶的丝或带可观察到巨磁致电阻抗效应,当频率几十kHz到几MH_z的电流通过非晶丝的截面时,在室温加80~800A/m的低磁场就能探测到△Z/Z(0)(=(Z(H)-Z(0))/Z(0))的变化在50%以上.我们在研究Fe基纳米微晶FeCuNbSiB中同样观测到巨磁致电阻抗效应,而且经不同温度退火后还会显示出不同的△Z/Z(0)值.当选取材料组分为Fe_(73)Cu_1Nb_(1.5)Mo_2Si_(13.5)B_9并在横向磁场退火后,磁致电阻抗效应可达~100%,灵敏度达~8%(A/m). 相似文献
2.
3.
4.
自从在CoFeSiB非晶丝(带)及FeCuNbSiB的纳米晶丝(薄膜)材料中发现巨磁致阻抗效应以来,GMI效应在实际运用中有广阔的前景,而且在理论上探讨GMI的起因也是非常有意义的,所以受到普遍的关注。非晶(纳米晶)软磁合金具有高的磁导率,在一定频率的交流驱动电流作用下,外加直流磁场阻碍了交流电流所感生的磁通量的变化,从而降低磁导率,提高趋肤深度,降低了交流阻抗,引起效应。及非晶薄带在不同的温度下热处理可以形成纳米级软磁合金,降低各向异性常数和磁致伸缩系数,提高磁导率,有利于GMI效应的出现。本文对以上三类材料进行不同温度下的热处理,研究GMI效应随外加磁场及驱动电流频率(f)的变化关系,并探讨GMI的来源。定义。 相似文献
5.
FeCrSiB纳米晶薄膜中的纵向和垂直巨磁电感效应 总被引:1,自引:1,他引:1
材料的交流阻抗随外加直流磁场的改变而变化的特性称磁阻抗效应.1992年日本名古屋大学毛利佳年雄教授等人最先报道了这一现象.最初对这一效应研究得最多的是具有零或负磁致伸缩系数的钴基非晶态软磁合金细丝,特别是长度只有几毫米的小尺寸细丝.当丝通以高频电流时,丝两端感生的电压振幅随沿丝长方向所加外磁场强度的改变而变化,这种变化无磁滞效应,是快响应、高灵敏度的.对这种特别大的磁阻抗效应人们称之为巨磁阻抗效应.在趋肤效应可以忽略的低频情况下,阻抗中的电阻分量受外磁场影响很小,交流电压的磁场关系主要来自细丝的电感分量,因而这时称巨磁电感效应.由于巨磁阻抗效应在交流磁传感器件中有着广阔的应用前景,因而它一出现就受到了人们的重视,目前所研究的材料品种已扩大到非晶薄带和薄膜中,而纳米晶合金薄膜中的巨磁阻抗效应至今还未见报道. 相似文献
6.
镀NiFeB膜的绝缘层包裹BeCu丝的巨磁阻抗效应和低频磁电阻效应 总被引:8,自引:1,他引:8
用化学镀方法制备了镀NiFeB膜的绝缘层包裹BeCu复合结构丝. 该复合结构丝在较低频率驱动电流下有较大的巨磁阻抗效应. 在10 kHz时磁阻抗效应(ΔZ/Z)max达31.4%, 500 kHz时(ΔZ/Z)max为250%. 同时在较低频率驱动电流下出现了磁电阻效应, 当频率为540 Hz时磁电阻效应(ΔR/R)max为–8.5%, 10 kHz时(ΔR/R)max达38.7%. 由于软磁NiFeB层的作用, 当交流驱动电流通过BeCu导电丝时产生了等效电阻和电感, NiFeB复合丝的巨磁阻抗效应特性和低频磁电阻效应与此密切相关. 相似文献
7.
8.
<正>目前有关磁性多层膜的巨磁电阻效应许多理论在处理时虽然并不尽相同,但就其物理本质和机制来说都源于自旋相关散射,这一点是大家普遍公认的.巨磁电阻的产生来自于自旋散射的不对称,也即散射势与自旋有关,然而更为重要的是依赖于自旋的散射势究竟是怎样产生的,这个问题至今尚无定论,是当前人们所关注的焦点. 相似文献
9.
10.
纳米Fe-In2O3颗粒膜的磁性和巨磁电阻效应 总被引:3,自引:0,他引:3
采用射频溅射法制备了纳米“铁磁金属-半导体基体”Fe-In2O3颗粒膜,研究了Fex(In2O3)1-x颗粒膜样品的磁性和巨磁电阻效应,实验结果表明;当Fe体积百分比为35%时,颗粒膜样品的室温磁电阻变化率△ρ/ρ0数值达到4.5%,Fe0.35(In2O3)0.65颗粒膜样品的磁电阻变化率△ρ/ρ随温度(T=1.5-300K)的变化关系表达;当温度低于10K时,△ρ/ρ0数值随温度的下降而迅速增大,在温度T=2K时△ρ/ρ0达到85%,通过研究颗粒膜低场磁化率X(T)温度关系和不同温度下的磁滞回线,证实当温度降低到临界温度Tp=10K时,颗粒膜中结构变化导致磁化状态发生“铁磁态-类自旋玻璃态”转变,Fe0.35(In2O3)0.65颗粒膜样品的磁电阻变化率△ρ/ρ0在温度低于10K时的迅速增大,可能是由于纳米“铁磁金属-半导体基体”Fe0.35(In2O3)0.65颗粒膜样品处于“类自旋玻璃态”时存在特殊的导电机制所造成的。 相似文献