共查询到19条相似文献,搜索用时 109 毫秒
1.
特型二氧化钒薄膜的制备及电阻温度系数的研究 总被引:12,自引:1,他引:12
采用真空蒸发真空退火的制备工艺,制备出了特定的VO2(B)型薄膜并给出了最佳制备条件,经X射线衍射(XRD)分析及电学参数测试,其电阻温度系数(TCR)值达到-3.4×10-2K-1,无相变和热滞现象.作者还讨论了薄膜电阻温度关系,及其电阻温度系数与晶粒大小、激活能等的关系. 相似文献
2.
关于退火温度对VO2薄膜制备及其电学性质影响的研究 总被引:8,自引:0,他引:8
采用真空蒸发-真空退火工艺由V2O5粉末制备VO2薄膜,研究了退火温度对薄膜的影响.经XRD,XPS及电阻-温度测试发现,随退火温度的升高,VO2薄膜先后经历了单斜晶系VO2(B)型→单斜晶系VO2(A)型→四方晶系VO2的变化,在3种类型的薄膜中V均以V4+为主,且在VO2(A)型薄膜中V4+含量最高.薄膜电阻以退火温度460℃时为分界线,低于460℃时,VO2(B)型薄膜电阻和电阻温度系数随退火温度的升高而增大;高于460℃时,四方晶系VO2薄膜的电阻及其电阻温度系数随退火温度的升高呈现相反的趋势. 相似文献
3.
用粉末冶金方法制备了Co90Fe10,研究了不同退火温度对电子束蒸发方法制备的CoFe薄膜磁电阻特性和微结构的影响。CoFe薄膜在优于5 5×10-4Pa的本底真空度下室温沉积在热氧化Si基片上。随后,样品在3×10-5Pa真空度下分别进行了150℃,280℃,330℃,450℃的60分钟退火处理。靶材的扫描电镜图像显示粉末冶金方法制备的靶材比较疏松。电阻率和磁电阻测量表明450℃退火处理能够明显降低CoFe薄膜电阻率和提高磁电阻变化率。X射线衍射发现沉积在热氧化Si基片上的CoFe膜(111)晶面面间距明显小于靶材相应晶面面间距,退火处理使膜(111)晶面面间距明显减小,趋向靶材面间距。 相似文献
4.
采用直流对向靶磁控溅射的方法在SiO2/Si衬底上制备了具有(001)择优取向的V2O5薄膜,利用X射线衍射、场发射扫描电子显微镜和四探针测试方法对退火前后薄膜的表面形貌、物相组分和电阻温度系数进行了测量.结果表明:200℃衬底温度下溅射得到的薄膜为多晶V2O5,膜表面颗粒呈细长针状,经700℃、1h退火后,薄膜中VO2相成分增多,颗粒变为长方形柱状;退火后薄膜的电阻温度系数达到-3.2%/K,与薄膜的微结构和物相组分有很大关系:3h退火后.得到高纯度的V2O5薄膜. 相似文献
5.
采用电子束蒸发的方法在石英基片上一次沉积厚度约为400nm的ZnS与PbS混合薄膜多个样品,随后将不同样品在3×10-3Pa的真空中分别以100~600℃退火1h.样品的成分、结晶性能、表面形貌和光学性质分别采用X射线能量色散谱、X射线衍射仪、扫描电子显微镜、原子力显微镜和分光光度计等进行检测.结果表明,制备态样品为非晶态,300℃真空退火的样品已开始结晶;当退火温度不低于500℃时,退火过程中,混合薄膜中的PbS大量挥发,退火后样品中的PbS含量明显减小.随着退火温度从100℃升高到600℃,样品的表面粗糙度和表面颗粒尺寸是先减小、后增大;光学透射率则呈现先升高后下降再升高的变化特性;退火后混合薄膜光学性质的变化与薄膜的成分、结晶性能和表面形貌的变化密切相关. 相似文献
6.
CdTe薄膜的微观结构分析 总被引:3,自引:0,他引:3
应用真空蒸发技术制备CdTe薄膜,并借助于扫描电子显微镜(SEM)、扫描俄歇谱仪(AES)和X射线衍射仪(XRD)对其微观结构进行分析。主要研究了不同工艺条件、不同原子配比、以及不同掺杂浓度下制得的CdTe薄膜的结构、物相,研究结果表明:以Cd:Te=0.9:1原子配比制得的CdTe薄膜具有最佳的结晶度和组分计量比;掺杂会使CdTe薄膜的结构、物相有所改变。 相似文献
7.
采用磁控溅射方法制备Cr-Si-Al电阻薄膜,以X射线衍射仪和透射电镜研究薄膜在不同温度退火处理后微观结构的变化,并利用四探针法测量薄膜的电阻值.结果表明:薄膜在低于250℃热处理时均为非晶态;退火温度大于300℃时.薄膜中开始析出尺寸约l0~l5nm的Cr(Si,Al)2晶粒.其后,在退火温度为350~450℃时.析出的晶粒大小没有明显变化.当退火温度为600℃时,析出的晶粒大小及数量急剧增大,平均尺寸接近15nm.随着退火温度的上升,薄膜电阻率先上升、后下降;薄膜电性能变化与微观结构的关系可以用活化隧道理论解释. 相似文献
8.
《中南民族大学学报(自然科学版)》2017,(4):67-72
以普通玻璃作为衬底材料,采用射频磁控溅射方法制备了氧化锌(ZnO)透明导电薄膜,通过X射线衍射(XRD)和X射线光电子能谱(XPS)测试,研究了衬底温度对薄膜微观结构及其结晶性能的影响.结果表明:所制备的ZnO薄膜均为(002)晶面择优取向生长的多晶薄膜,其微观结构和结晶性能与衬底温度密切相关.衬底温度对ZnO薄膜的织构系数TC(hkl)、平均晶粒尺寸、位错密度、晶格应变和晶格常数都具有不同程度的影响,当衬底温度为800 K时,ZnO薄膜样品的织构系数TC(002)最高(4.929)、平均晶粒尺寸最大(20.91 nm)、位错密度最小(2.289×10~(15)line·m~(-2))、晶格应变最低(2.781×10~(-3)),具有最高的(002)晶面择优取向生长性和最佳的微观结构性能. 相似文献
9.
采用溶胶—凝胶法在ITO玻璃衬底上制备氧化锌(ZnO)薄膜,利用AFM和UV对不同退火温度的ZnO薄膜样品进行分析。经实验的表征结果分析,退火温度为500℃~700℃区间,透射率呈现先上升后下降的趋势,而禁带宽度基本保持不变。通过实验结果对比得出,当退火温度为550℃时,制备出的ZnO薄膜的结晶质量较好,表面较光滑,透射率约为90%,禁带宽度为3.25eV, 相似文献
10.
利用匀胶机制备不同厚度TiO2薄膜,分别用X射线衍射仪(X-ray Diffraction,XRD)、拉曼(Raman)光谱、原子力显微镜(Atomic Force Microscope,AFM)和X射线光电子能谱(X-ray photoelectron Spectroscopy,XPS)表征薄膜微观结构;利用紫外-可见分光光度计(UV-Vis)研究薄膜厚度对光透过率的影响;通过表面接触角测试仪研究TiO2薄膜厚度对其亲水性的影响.实验结果表明:匀胶二层的TiO2薄膜(厚度约为170nm)可达到最佳亲水性;TiO2表面形貌和表面羟基官能团(-OH)的含量会对薄膜亲水性造成影响;继续增加TiO2薄膜厚度不利于改善薄膜亲水性. 相似文献
11.
真空蒸发制备ZnS薄膜及其性能研究 总被引:8,自引:0,他引:8
用真空蒸发技术在玻璃衬底上获得了透明ZnS薄膜.薄膜为立方闪锌矿结构,呈高阻状态,在可见光范围内有较高的的透过率.在不同条件下对薄膜进行了热处理,研究了热处理对薄膜性能的影响 相似文献
12.
用电子束蒸发法在玻璃基片上制备太阳能电池窗口层ZnO薄膜,并在氧气环境下对其在400~500℃的温度下退火1h.通过X射线衍射、电镜扫描、透过率光谱等手段测试和分析所制备的薄膜,结果表明:当薄膜未经过热处理时,薄膜中含有大量的单质锌;当薄膜经过400℃退火后,薄膜逐渐结晶,并且其物相成分基本是ZnO;当退火温度逐渐升高到500℃时,晶粒长大,晶化程度提高,对可见光和近红外光的透过率也增大,平均值可达90%,此时所制备出的ZnO薄膜适合于作为太阳能电池的窗口层。 相似文献
13.
用真空蒸发技术在玻璃衬底上获得了透明的(Cd,Zn)S薄膜,薄膜为纤锌矿结构,具有沿〔002〕晶向的择优生长取向.薄膜的性能随A值(A=ZnSZnS+CdS)和蒸发条件而变化,薄膜为n型材料,呈高阻状态,在可见光范围内有良好的透过率 相似文献
14.
CVD法制备SiO2薄膜工艺条件的研究 总被引:4,自引:1,他引:4
在Al2 O3 陶瓷基片上以正硅酸乙酯 (TEOS)为原料 ,高纯氮气作载气 ,采用低压冷壁式设备和化学气相沉积(CVD)方法制备SiO2 薄膜 ,研究了基片温度、TEOS温度和沉积时间对SiO2 薄膜沉积速率的影响 .采用XRD ,XPS和SEM技术对SiO2 薄膜的组成和结构进行了分析 相似文献
15.
《科学通报(英文版)》1994,39(18):1507-1507
16.
金属在真空中退火是真空热处理的一种工艺,目前在钛、锆等稀有金属材料的加工中应用广泛。详细介绍了VTS-80真空退火炉的应用、结构及主要部件的设计。 相似文献
17.
磁控溅射制备的氧化钒薄膜的结构研究 总被引:7,自引:0,他引:7
用X射线光电子谱(XPS),原子力显微镜(AFM)和X射线衍射(XRD)研究了磁控溅射制备的氧化钒薄膜的宏观、微观和电子学结构。建立了薄膜的相结构与XPS谱中V2p3/2特征峰的结合能之间的定量关系。给出了二氧化钒薄膜的AFM像。所得到的二氧化钒热致变色薄膜的结构特性与光电特性相一致。 相似文献
18.
磁控反应溅射法低温制备氮化硅薄膜 总被引:6,自引:0,他引:6
采用射频 (RF)磁控反应溅射法制备出氮化硅薄膜 .从红外吸收光谱可见 ,氮气参加了反应并生成 Si- N键 ,薄膜中含有少量的 Si- O键和 Si- H键 ;薄膜的成分与制备过程中基片温度、射频功率等工艺参数密切相关 ,当基片温度升高到 40 0℃时 ,薄膜中基本不再含 Si- H键 ,氮化硅薄膜的纯度得到提高 . 相似文献
19.
磁控溅射沉积TiN薄膜工艺优化 总被引:2,自引:0,他引:2
磁控溅射TiN薄膜的力学和腐蚀性能与薄膜的结构密切相关,而其结构又取决于薄膜的制备工艺.采用正交实验方法对影响TiN薄膜结构和性能的重要参数如电流、负偏压、氮流量和基体温度等进行优化,以期获得更优的制备工艺条件.实验结果显示,其对TiN薄膜纳米硬度影响由大到小的次序为:基体温度>负偏压>电流>氮流量;对膜/基结合力的影响由大到小的顺序为:基体温度>氮流量>电流>负偏压.综合考虑TiN薄膜的纳米硬度和膜/基结合力,获得的最优方案为:基体温度300℃,电流0.2A,负偏压-85 V,标准状态下氮流量4 mL/min. 相似文献