首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
以双馈异步风力发电机组为研究对象,根据其数学模型,建立了反映双馈异步风力发电机机电特性的仿真模型;根据空气动力学原理,建立了风力机及风速仿真模型.在MATLAB/Simulink软件平台上,搭建一个实际的双馈异步风力发电机并网风电场的系统仿真模型.仿真分析了在风速扰动、电网短路故障作用下风电场的运行特性.仿真结果表明:双馈风力发电机组可以很好地对风速波动做出跟踪响应且无明显振荡;在电网短路情况下,双馈型异步风力发电机组具有一定的低电压穿越性能;相比有载调压方式,风电场采用静止无功补偿模式具有明显的优越性.  相似文献   

2.
以异步风力发电机组为研究对象,针对目前并联电容器组的无功补偿方式所显现出来的弊端,采用动态无功补偿改善并网风电场无功特性。在风速渐变和电网短路故障的情况下,分别采用静止无功补偿和静止同步补偿进行无功补偿,并以Matlab/Simulink环境为平台,搭建风电场模型、动态无功补偿和风速模型。仿真结果表明,虽然两者均可向风电场提供无功功率补偿以稳定并网风电场电压,但是静止同步补偿器能更快地使系统电压和有功功率接近故障前的稳定运行状态,需要无功补偿容量少,更适合用于并网风电场的动态无功补偿。  相似文献   

3.
电磁耦合调速风力发电机组与传统风力发电机组不同,通过电磁耦合器借助电磁转矩将风力机齿轮箱输出功率传递给直接并网的同步发电机。采用变频器供电的电磁耦合器具有快速灵活调节其电磁转矩的能力。该文提出了在传递风力机输出转矩的基础上,附加额外的转矩控制,以此来减小系统扰动对同步发电机的影响。搭建了风力发电机组单机无穷大电网的系统模型,探讨转矩调节控制策略与手段。在MATLAB Simulink环境下,对系统干扰甚至故障状态下的动态特性进行分析,仿真结果表明:与只有励磁和风力机输入功率调节机组相比,增加了附加转矩控制的系统暂态稳定性和动态响应过程有较大的改善,充分满足低电压穿越要求,增强了对电网电压的支撑能力。  相似文献   

4.
因风速的随机性和间断性会给电网带来不稳定因素.为了降低风电场并网对系统稳定的影响.首先建立双馈感应风力发电机和超导储能装置的数学模型;然后合理设计功率解耦的比例-积分-微分超导磁储能控制器抑制功率波动,从而平滑风电场的输出功率;最后基于Matlab中Simulink.对含6台单机容量为1500kw的双馈感应风力发电机组成的风电场进行仿真研究.仿真结果表明,该控制策略的超导储能装置能够降低四分法风速和单相短路接地故障对电网电压的冲击.  相似文献   

5.
王辉君 《河南科学》2011,29(9):1099-1103
在分析不对称电网电压条件下直驱永磁风力发电机组并网逆变器数学模型的基础上,提出了正负序双电流闲环控制策略,完成风力发电机组在电网发生不对称故障下的不脱网运行.在PSCAD/EMTDC环境下建立基于IGBT背靠背变频器的1.5 MW永磁直驱风力发电系统仿真模型,仿真结果证明该控制策略的可行性.  相似文献   

6.
风电系统及其电压特性研究   总被引:12,自引:1,他引:11  
基于风力发电机和配电网的特点,对不同风速和系统连接阻抗条件下的风电系统电压特性进行了研究。文章还对风力发电机组并网和脱网情况下风电系统的电压变化进行了仿真。研究结果对风电场的规划及安全运行具有指导意义。  相似文献   

7.
正与常规发电厂相比,风电场在运行中具有显著不同的特点,其一是采用异步发电机的风力发电机,在运行时需要从系统吸收无功功率来建立磁场,从而使大型风电场并网运行后对局部电网电压水平有明显影响;其二是由于风速随机变化,导致风电场的输出功率具有波动性,引起电网电压波动和闪变;此外,对带电力电子变换器的风力发电机组,风电场会产生一定的谐波电流并注入所接电网,这些因素都可能直接影响局部电网的电能质量。因此为了研究风电场并网  相似文献   

8.
针对并网风力机的运行特性,在其传动系统和发电机的动态模型基础上设计控制器.当外界风速较大,提出采用基于神经网络的风力机叶片桨距角控制器抑制多余的风能进入发电系统,维持风力发电机馈送到电网的功率稳定;当风速较低时,风力机转速需要跟随风速变化,调整叶片桨距角处于捕捉最大风能位置处,保证风力机的风能转换效率最优,提高其运行效率.仿真结果验证了该控制方法的有效性.  相似文献   

9.
以双馈式风力发电机(DFIG)为主体的大型风力发电机组在电网中所占的比例快速提高,为了确保风电接入电力系统运行的可靠性、安全性与稳定性,电力系统对并网风力发电机在电网故障,特别是电网电压骤降故障下的低压运行能力提出了更高的要求。文中介绍了电网对称故障时DFIG的暂态特性,通过对转子电流与定子磁链的关系分析得出优化转子侧变换器控制策略的方案,通过配合改进网侧变流器控制方法为DFIG在电网电压跌落期间提供了一个稳定的直流母线电压,从而使电网对称故障时的定转子过电流和直流母线侧过电压的情况得到解决。在研究模型的基础上,通过改变转子侧和网侧变换器控制策略的Matlab模型进行仿真实验,结果表明该方案对于对称电压跌落故障时的LVRT有一定的可行性。  相似文献   

10.
基于电磁耦合器调速的新变速恒频风力发电机组   总被引:1,自引:0,他引:1  
为改善风力发电机组对电网电压的支撑和故障穿越能力,提出了基于电磁耦合器调速的新型风电机组。在其传动链中,电磁耦合器的两端分别与变速齿轮箱的高速轴和恒速同步发电机的输入轴连接,两个轴系之间的转速差由电磁耦合器及变频器控制。基于电磁耦合器的工作原理,分析了风力机和电磁耦合器的转矩特性,提出了电磁耦合器的设计方法,在Matlab/simulink平台上搭建了整个系统的仿真模型,并完成了系统并网运行时的稳态性能仿真。结果表明:基于电磁耦合器调速的风电机组只需配备机组功率15%左右功率容量的电磁耦合器和变频器即可实现变速恒频运行,而且该类风电机组具有与常规火力发电机组相似的电网支撑和故障穿越能力。  相似文献   

11.
研究了风电接入某实际电力系统对系统动态频率产生的影响。通过建立直驱式永磁同步风电机组动态模型和含风电的实际电力系统模型,对含风电的电力系统动态频率进行了仿真分析。研究了风速扰动对系统动态频率的影响、风电渗透率上升对系统频率调节能力的影响以及风机脱网故障对系统动态频率的影响。在风机增加了基于虚拟惯性的频率控制系统,研究了具有调频系统的风电机组对系统动态频率的影响。研究结果表明大规模风电场的风速扰动将导致系统频率出现显著波动;随着系统风电渗透率的增加,系统的调频能力将明显下降;风电场在故障下的风机脱网事故将对系统动态频率造成严重影响。增加频率控制系统使风电机组具备了一定的调频能力,有效地抑制了扰动情况下的系统频率波动。  相似文献   

12.
为了改善电网短路故障情况下直驱式永磁风电系统的并网逆变器控制性能,提出基于比例积分谐振控制器的并网逆变器直接功率控制算法,通过设置基频谐振控制器实现网侧变流器输出电压、电流信号的无静差跟踪,同时在直流母线侧通过2倍工频谐振控制器可以抑制电网故障状态下直流母线的电压波动.与传统网侧逆变器的交直轴电流双闭环PI控制相比,该算法无须分离正负序电流分量,从而避免了电流滤波环节带来的系统带宽减小的弊端.在PSCAD/EMTDC环境下建立基于背靠背变流器的1.5MW永磁直驱风力发电系统仿真模型,仿真结果表明:当电网短路导致电压不平衡时,结合能量卸荷电路能够抑制直流母线电压的升高,限制了电网过电流,可以实现网侧逆变器的单位功率因数控制,增强了风电机组的故障穿越能力.同时搭建了10kV·A样机系统,试验波形证明了系统设计与控制策略的正确性和先进性.  相似文献   

13.
随着风电机组装机容量的不断增加,风电场并网规范对风电机组的运行要求越来越严格,要求具有外部电网故障下不脱网运行(低压穿越)的能力.为了研究双馈风电机组(DFIG)在低压穿越控制策略的优化方面提供有效的动态仿真与分析平台,并克服Matlab/Simulink仿真环境下所建模型在动态性能方面存在的不足,采用PSCAD仿真软件建立了双馈风电系统的动态仿真模型.通过分析电网对称故障时DFIG的暂态特性,并对转子电流与定子磁链的关系分析得出涉及定子磁链动态过程的改进矢量控制方案,配合转子侧Crowbar保护电路,并对网侧变流器进行有功和无功功率的解耦控制,从而使得电网对称故障时转子过电流、直流母线电压和转矩剧烈波动的情况得到了解决.  相似文献   

14.
风具有随机间歇性特性,在并网条件下参与电网负荷预测,其风速和风向的间歇性会对电网产生很大冲击,严重影响电力系统的稳定性.结合微电网的特点和风电运行特性,搭建微电网的基本负荷模型和风电模型,并采用MATLAB/Simulink建立负荷预测仿真模型.仿真结果表明,含风电微电网不仅能够抵御消化风电并网的影响,还能够有效降低电网的负荷曲线的峰谷差.含风电微电网参与电网的负荷预测能够有效地提高电力系统的供电可靠性.  相似文献   

15.
在分析并网笼型异步发电机暂态稳定性机理的基础上,分别建立了考虑定子电磁暂态的详细模型和忽略定子电磁暂态的简化模型,以及1个和2个等效质量块的风力机轴系模型。针对上述4种不同组合的风力发电机组模型,利用Matlab/Simulink对定子3相短路故障情况下的机组暂态行为进行了仿真比较。在此基础上,利用一种计算异步发电机临界故障切除转速的传统直接法对临界切除时间进行了估算,并与时域仿真法进行了比较分析。结果表明,风力机轴系不同质量块模型对机组暂态稳定性分析的结果影响很大,采用临界切除转速的传统直接法难于正确估算临界切除时间。  相似文献   

16.
为了消除风能波动性和间歇性对电网平稳运行的冲击影响,实现风轮捕获能量的储存与调节,将储能系统引入到液压型风力发电机组的泵控马达闭式液压系统中,利用AMESim软件建立了无风时独立依靠储能系统储存液压能驱动马达旋转的数学模型.针对这种新型液压风力机液压系统的组成和工作原理,提出了一种恒压差+恒转速的双闭环马达恒转速控制策略以保证储能发电时发电机始终工作在同步转速.对比分析了在恒压差单闭环与恒压差+恒转速双闭环控制作用下系统各变量的响应曲线和变化趋势.仿真结果表明所设计的双闭环马达恒转速控制策略可以使马达转速稳定在1 500 r/min,满足储能单独发电时对输出电能频率的要求.  相似文献   

17.
双馈风机由于自身运行特性,不再具备同步发电机所具有的惯性响应能力,导致双馈风电机组大规模并网后,减弱电力系统中惯性响应能力,系统发生功率扰动后,不足以维持频率在规定范围内变动,对电力系统稳定运行产生不良影响。首先分析电力系统引入风电机组后,风机对电力系统的影响;提出双馈风电机组附加转速优化虚拟惯性控制策略,在传统虚拟惯性控制中添加转速优化模块,并与转子转速控制相结合,使风机转子释放或吸收能量更多且平缓,减少对电网的冲击,并在该控制策略中加入转子转速保护模块,防止转子转速过低或过高,从而导致风机切出电网或对风机造成损伤,使双馈风机组具有与常规同步发电机同样的特性;最后在电网发生负荷突变情况下,引入附加转速优化虚拟惯性控制和综合控制进行仿真,验证所提出控制策略在电网等效惯性进一步降低时的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号