首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malinina L  Malakhova ML  Teplov A  Brown RE  Patel DJ 《Nature》2004,430(7003):1048-1053
Lipid transfer proteins are important in membrane vesicle biogenesis and trafficking, signal transduction and immunological presentation processes. The conserved and ubiquitous mammalian glycolipid transfer proteins (GLTPs) serve as potential regulators of cell processes mediated by glycosphingolipids, ranging from differentiation and proliferation to invasive adhesion, neurodegeneration and apoptosis. Here we report crystal structures of apo-GLTP (1.65 A resolution) and lactosylceramide-bound (1.95 A) GLTP, in which the bound glycosphingolipid is sandwiched, after adaptive recognition, within a previously unknown two-layer all-alpha-helical topology. Glycosphingolipid binding specificity is achieved through recognition and anchoring of the sugar-amide headgroup to the GLTP recognition centre by hydrogen bond networks and hydrophobic contacts, and encapsulation of both lipid chains, in a precisely oriented manner within a 'moulded-to-fit' hydrophobic tunnel. A cleft-like conformational gating mechanism, involving two interhelical loops and one alpha-helix of GLTP, could enable the glycolipid chains to enter and leave the tunnel in the membrane-associated state. Mutation and functional analyses of residues in the glycolipid recognition centre and within the hydrophobic tunnel support a framework for understanding how GLTPs acquire and release glycosphingolipids during lipid intermembrane transfer and presentation processes.  相似文献   

2.
Tomita K  Fukai S  Ishitani R  Ueda T  Takeuchi N  Vassylyev DG  Nureki O 《Nature》2004,430(7000):700-704
The 3'-terminal CCA nucleotide sequence (positions 74-76) of transfer RNA is essential for amino acid attachment and interaction with the ribosome during protein synthesis. The CCA sequence is synthesized de novo and/or repaired by a template-independent RNA polymerase, 'CCA-adding enzyme', using CTP and ATP as substrates. Despite structural and biochemical studies, the mechanism by which the CCA-adding enzyme synthesizes the defined sequence without a nucleic acid template remains elusive. Here we present the crystal structure of Aquifex aeolicus CCA-adding enzyme, bound to a primer tRNA lacking the terminal adenosine and an incoming ATP analogue, at 2.8 A resolution. The enzyme enfolds the acceptor T helix of the tRNA molecule. In the catalytic pocket, C75 is adjacent to ATP, and their base moieties are stacked. The complementary pocket for recognizing C74-C75 of tRNA forms a 'protein template' for the penultimate two nucleotides, mimicking the nucleotide template used by template-dependent polymerases. These results are supported by systematic analyses of mutants. Our structure represents the 'pre-insertion' stage of selecting the incoming nucleotide and provides the structural basis for the mechanism underlying template-independent RNA polymerization.  相似文献   

3.
Widboom PF  Fielding EN  Liu Y  Bruner SD 《Nature》2007,447(7142):342-345
Enzyme-catalysed oxidations are some of the most common transformations in primary and secondary metabolism. The vancomycin biosynthetic enzyme DpgC belongs to a small class of oxygenation enzymes that are not dependent on an accessory cofactor or metal ion. The detailed mechanism of cofactor-independent oxygenases has not been established. Here we report the first structure of an enzyme of this oxygenase class in complex with a bound substrate mimic. The use of a designed, synthetic substrate analogue allows unique insights into the chemistry of oxygen activation. The structure confirms the absence of cofactors, and electron density consistent with molecular oxygen is present adjacent to the site of oxidation on the substrate. Molecular oxygen is bound in a small hydrophobic pocket and the substrate provides the reducing power to activate oxygen for downstream chemical steps. Our results resolve the unique and complex chemistry of DpgC, a key enzyme in the biosynthetic pathway of an important class of antibiotics. Furthermore, mechanistic parallels exist between DpgC and cofactor-dependent flavoenzymes, providing information regarding the general mechanism of enzymatic oxygen activation.  相似文献   

4.
MacDonald D  Demarre G  Bouvier M  Mazel D  Gopaul DN 《Nature》2006,440(7088):1157-1162
Lateral DNA transfer--the movement of genetic traits between bacteria--has a profound impact on genomic evolution and speciation. The efficiency with which bacteria incorporate genetic information reflects their capacity to adapt to changing environmental conditions. Integron integrases are proteins that mediate site-specific DNA recombination between a proximal primary site (attI) and a secondary target site (attC) found within mobile gene cassettes encoding resistance or virulence factors. The lack of sequence conservation among attC sites has led to the hypothesis that a sequence-independent structural recognition determinant must exist within attC. Here we report the crystal structure of an integron integrase bound to an attC substrate. The structure shows that DNA target site recognition and high-order synaptic assembly are not dependent on canonical DNA but on the position of two flipped-out bases that interact in cis and in trans with the integrase. These extrahelical bases, one of which is required for recombination in vivo, originate from folding of the bottom strand of attC owing to its imperfect internal dyad symmetry. The mechanism reported here supports a new paradigm for how sequence-degenerate single-stranded genetic material is recognized and exchanged between bacteria.  相似文献   

5.
Vinblastine is one of several tubulin-targeting Vinca alkaloids that have been responsible for many chemotherapeutic successes since their introduction in the clinic as antitumour drugs. In contrast with the two other classes of small tubulin-binding molecules (Taxol and colchicine), the binding site of vinblastine is largely unknown and the molecular mechanism of this drug has remained elusive. Here we report the X-ray structure of vinblastine bound to tubulin in a complex with the RB3 protein stathmin-like domain (RB3-SLD). Vinblastine introduces a wedge at the interface of two tubulin molecules and thus interferes with tubulin assembly. Together with electron microscopical and biochemical data, the structure explains vinblastine-induced tubulin self-association into spiral aggregates at the expense of microtubule growth. It also shows that vinblastine and the amino-terminal part of RB3-SLD binding sites share a hydrophobic groove on the alpha-tubulin surface that is located at an intermolecular contact in microtubules. This is an attractive target for drugs designed to perturb microtubule dynamics by interfacial interference, for which tubulin seems ideally suited because of its propensity to self-associate.  相似文献   

6.
Yusupova G  Jenner L  Rees B  Moras D  Yusupov M 《Nature》2006,444(7117):391-394
Translation initiation is a major determinant of the overall expression level of a gene. The translation of functionally active protein requires the messenger RNA to be positioned on the ribosome such that the start/initiation codon will be read first and in the correct frame. Little is known about the molecular basis for the interaction of mRNA with the ribosome at different states of translation. Recent crystal structures of the ribosomal subunits, the empty 70S ribosome and the 70S ribosome containing functional ligands have provided information about the general organization of the ribosome and its functional centres. Here we compare the X-ray structures of eight ribosome complexes modelling the translation initiation, post-initiation and elongation states. In the initiation and post-initiation complexes, the presence of the Shine-Dalgarno (SD) duplex causes strong anchoring of the 5'-end of mRNA onto the platform of the 30S subunit, with numerous interactions between mRNA and the ribosome. Conversely, the 5' end of the 'elongator' mRNA lacking SD interactions is flexible, suggesting a different exit path for mRNA during elongation. After the initiation of translation, but while an SD interaction is still present, mRNA moves in the 3'-->5' direction with simultaneous clockwise rotation and lengthening of the SD duplex, bringing it into contact with ribosomal protein S2.  相似文献   

7.
Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.  相似文献   

8.
The anaphase-promoting complex or cyclosome (APC/C) is an unusually large E3 ubiquitin ligase responsible for regulating defined cell cycle transitions. Information on how its 13 constituent proteins are assembled, and how they interact with co-activators, substrates and regulatory proteins is limited. Here, we describe a recombinant expression system that allows the reconstitution of holo APC/C and its sub-complexes that, when combined with electron microscopy, mass spectrometry and docking of crystallographic and homology-derived coordinates, provides a precise definition of the organization and structure of all essential APC/C subunits, resulting in a pseudo-atomic model for 70% of the APC/C. A lattice-like appearance of the APC/C is generated by multiple repeat motifs of most APC/C subunits. Three conserved tetratricopeptide repeat (TPR) subunits (Cdc16, Cdc23 and Cdc27) share related superhelical homo-dimeric architectures that assemble to generate a quasi-symmetrical structure. Our structure explains how this TPR sub-complex, together with additional scaffolding subunits (Apc1, Apc4 and Apc5), coordinate the juxtaposition of the catalytic and substrate recognition module (Apc2, Apc11 and Apc10 (also known as Doc1)), and TPR-phosphorylation sites, relative to co-activator, regulatory proteins and substrates.  相似文献   

9.
The serine proteinase alpha-thrombin causes blood clotting through proteolytic cleavage of fibrinogen and protease-activated receptors and amplifies its own generation by activating the essential clotting factors V and VIII. Thrombomodulin, a transmembrane thrombin receptor with six contiguous epidermal growth factor-like domains (TME1-6), profoundly alters the substrate specificity of thrombin from pro- to anticoagulant by activating protein C. Activated protein C then deactivates the coagulation cascade by degrading activated factors V and VIII. The thrombin-thrombomodulin complex inhibits fibrinolysis by activating the procarboxypeptidase thrombin-activatable fibrinolysis inhibitor. Here we present the 2.3 A crystal structure of human alpha-thrombin bound to the smallest thrombomodulin fragment required for full protein-C co-factor activity, TME456. The Y-shaped thrombomodulin fragment binds to thrombin's anion-binding exosite-I, preventing binding of procoagulant substrates. Thrombomodulin binding does not seem to induce marked allosteric structural rearrangements at the thrombin active site. Rather, docking of a protein C model to thrombin-TME456 indicates that TME45 may bind substrates in such a manner that their zymogen-activation cleavage sites are presented optimally to the unaltered thrombin active site.  相似文献   

10.
Evidence for a spectral basis of texture perception in bat sonar   总被引:6,自引:0,他引:6  
S Schmidt 《Nature》1988,331(6157):617-619
Bats obtain information about the structure of objects in the outside world from their echolocation signals, an extremely useful method when hunting non-flying prey in densely cluttered habitats, for example. Information about object structure is contained both in the time and in the spectral interference patterns of signals reflected from surfaces at different distances from the bat. I report here an experiment designed to test the extent to which bats use these two types of information. A 'phantom target' is generated by playing back to an echolocating bat signals that mimic the result of reflection from two planes set at different distances. The ability of the bat to discriminate between two such targets is investigated as a function of the separations of the planes. Several of the results do not fit the hypothesis that the bat simply uses time-delay information: the very small time difference that can be discriminated, the fall off in ability to discriminate planes at a particular separation and the symmetry of the discrimination ability measured in the frequency domain. The empirical data can best be fitted by a function based on spectral correlation.  相似文献   

11.
12.
Matsuura Y  Stewart M 《Nature》2004,432(7019):872-877
The nuclear import and export of macromolecular cargoes through nuclear pore complexes is mediated primarily by carriers such as importin-beta. Importins carry cargoes into the nucleus, whereas exportins carry cargoes to the cytoplasm. Transport is orchestrated by nuclear RanGTP, which dissociates cargoes from importins, but conversely is required for cargo binding to exportins. Here we present the 2.0 A crystal structure of the nuclear export complex formed by exportin Cse1p complexed with its cargo (Kap60p) and RanGTP, thereby providing a structural framework for understanding nuclear protein export and the different functions of RanGTP in export and import. In the complex, Cse1p coils around both RanGTP and Kap60p, stabilizing the RanGTP-state and clamping the Kap60p importin-beta-binding domain, ensuring that only cargo-free Kap60p is exported. Mutagenesis indicated that conformational changes in exportins couple cargo binding to high affinity for RanGTP, generating a spring-loaded molecule to facilitate disassembly of the export complex following GTP hydrolysis in the cytoplasm.  相似文献   

13.
At termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 A resolution. The stop codon is recognized in a pocket formed by conserved elements of RF1, including its PxT recognition motif, and 16S ribosomal RNA. The codon and the 30S subunit A site undergo an induced fit that results in stabilization of a conformation of RF1 that promotes its interaction with the peptidyl transferase centre. Unexpectedly, the main-chain amide group of Gln 230 in the universally conserved GGQ motif of the factor is positioned to contribute directly to peptidyl-tRNA hydrolysis.  相似文献   

14.
Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.  相似文献   

15.
Klein DE  Stayrook SE  Shi F  Narayan K  Lemmon MA 《Nature》2008,453(7199):1271-1275
Members of the epidermal growth factor receptor (EGFR) or ErbB/HER family and their activating ligands are essential regulators of diverse developmental processes. Inappropriate activation of these receptors is a key feature of many human cancers, and its reversal is an important clinical goal. A natural secreted antagonist of EGFR signalling, called Argos, was identified in Drosophila. We showed previously that Argos functions by directly binding (and sequestering) growth factor ligands that activate EGFR. Here we describe the 1.6-A resolution crystal structure of Argos bound to an EGFR ligand. Contrary to expectations, Argos contains no EGF-like domain. Instead, a trio of closely related domains (resembling a three-finger toxin fold) form a clamp-like structure around the bound EGF ligand. Although structurally unrelated to the receptor, Argos mimics EGFR by using a bipartite binding surface to entrap EGF. The individual Argos domains share unexpected structural similarities with the extracellular ligand-binding regions of transforming growth factor-beta family receptors. The three-domain clamp of Argos also resembles the urokinase-type plasminogen activator (uPA) receptor, which uses a similar mechanism to engulf the EGF-like module of uPA. Our results indicate that undiscovered mammalian counterparts of Argos may exist among other poorly characterized structural homologues. In addition, the structures presented here define requirements for the design of artificial EGF-sequestering proteins that would be valuable anti-cancer therapeutics.  相似文献   

16.
Structural and functional basis for GABAA receptor heterogeneity   总被引:37,自引:0,他引:37  
When gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrate brain, binds to its receptor it activates a chloride channel. Neurotransmitter action at the GABAA receptor is potentiated by both benzodiazepines and barbiturates which are therapeutically useful drugs (reviewed in ref. 1). There is strong evidence that this receptor is heterogeneous. We have previously isolated complementary DNAs encoding an alpha- and a beta-subunit and shown that both are needed for expression of a functional GABAA receptor. We have now isolated cDNAs encoding two additional GABAA receptor alpha-subunits, confirming the heterogeneous nature of the receptor/chloride channel complex and demonstrating a molecular basis for it. These alpha-subunits are differentially expressed within the CNS and produce, when expressed with the beta-subunit in Xenopus oocytes, receptor subtypes which can be distinguished by their apparent sensitivity to GABA. Highly homologous receptor subtypes which differ functionally seem to be a common feature of brain receptors.  相似文献   

17.
酿酒酵母是目前研究背景最为清楚的单细胞真核生物,迄今已知有78个基因编码的蛋白质直接参与其氧化应激反应.这些蛋白质按照功能可以被分为三大类:感应蛋白、调控蛋白和效应蛋白.我们从效应蛋白出发,沿着硫氧还蛋白系统和谷氧还蛋白系统的电子传递路线,逐一解析了所有关键节点蛋白质的三维结构.结合这些蛋白质的生化性质研究、蛋白质-蛋白质复合物的鉴定和结构解析,以及酵母基因组数据库中日益更新的实验数据,我们已初步建立参与酵母氧化应激反应的效应蛋白在原子分辨率上的相互作用网络.这些研究将为我们理解人类氧化应激反应的作用机理提供重要提示,进而可能用于疾病治疗和抗衰老药物的设计.  相似文献   

18.
关于限制差基标号线性分布模型的优化   总被引:1,自引:1,他引:0  
优化限制差基标号线性模型,设RDB直尺长为len,有n条刻度,实现完全度量的刻度分布用M(len,n)来表示,并得到以下4个优化线性模型: {1,1,1,6,1,7,7,13,13,…,13,6,6,4,1,1}∈M(13n-101,n);{1,1,1,2,1,6,11,1,14,14,…,14,3,8,2,3,4}∈M(14n-124,n) {1,1,1,1,1,3,1,4,8,15,15,…,15,7,3,4,10,2}∈M(15n-148,n);{1,1,1,1,1,1,1,3,1,16,16,…,16,12,2,4,11,2,4}∈M(16n-178,n)  相似文献   

19.
Singh SK  Hora R  Belrhali H  Chitnis CE  Sharma A 《Nature》2006,439(7077):741-744
Molecular processes that govern pathogenic features of erythrocyte invasion and cytoadherence in malaria are reliant on Plasmodium-specific Duffy-binding-like domains (DBLs). These cysteine-rich modules recognize diverse host cell-surface receptors during pathogenesis. DBLs of parasite erythrocyte-binding proteins mediate invasion, and those from the antigenically variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) have been implicated in cytoadherence. The simian and human malarial parasites, P. knowlesi and P. vivax, invade human erythrocytes exclusively through the host DARC receptor (Duffy antigen receptor for chemokines). Here we present the crystal structure of the P. knowlesi DBL domain (Pkalpha-DBL), which binds to DARC during invasion of human erythrocytes. Pkalpha-DBL retains the overall fold observed in DBLs from P. falciparum erythrocyte-binding antigen (EBA)-175 (ref. 4). Mapping the residues that have previously been implicated in binding highlights a fairly flat but exposed site for DARC recognition in subdomain 2 of Pkalpha-DBL; this is in sharp contrast to receptor recognition by EBA-175 (ref. 4). In Pkalpha-DBL, the residues that contact DARC and the clusters of residues under immune pressure map to opposite surfaces of the DBL, and suggest a possible mechanism for immune evasion by P. vivax. Our comparative structural analysis of Pkalpha-DBL and P. falciparum EBA-175 provides a framework for the understanding of malaria parasite DBLs, and may affect the development of new prophylactic and therapeutic strategies.  相似文献   

20.
Kuzuyama T  Noel JP  Richard SB 《Nature》2005,435(7044):983-987
The anti-oxidant naphterpin is a natural product containing a polyketide-based aromatic core with an attached 10-carbon geranyl group derived from isoprenoid (terpene) metabolism. Hybrid natural products such as naphterpin that contain 5-carbon (dimethylallyl), 10-carbon (geranyl) or 15-carbon (farnesyl) isoprenoid chains possess biological activities distinct from their non-prenylated aromatic precursors. These hybrid natural products represent new anti-microbial, anti-oxidant, anti-inflammatory, anti-viral and anti-cancer compounds. A small number of aromatic prenyltransferases (PTases) responsible for prenyl group attachment have only recently been isolated and characterized. Here we report the gene identification, biochemical characterization and high-resolution X-ray crystal structures of an architecturally novel aromatic PTase, Orf2 from Streptomyces sp. strain CL190, with substrates and substrate analogues bound. In vivo, Orf2 attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during naphterpin biosynthesis. In vitro, Orf2 catalyses carbon-carbon-based and carbon-oxygen-based prenylation of a diverse collection of hydroxyl-containing aromatic acceptors of synthetic, microbial and plant origin. These crystal structures, coupled with in vitro assays, provide a basis for understanding and potentially manipulating the regio-specific prenylation of aromatic small molecules using this structurally unique family of aromatic PTases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号