共查询到20条相似文献,搜索用时 140 毫秒
1.
针对谱聚类算法对尺度参数敏感的问题,利用集成学习算法良好的鲁棒性和泛化能力,提出了一种无监督集成学习算法——谱聚类集成算法.该算法先利用谱聚类的内在特性产生集成学习所需的多个聚类个体,再采用Hungarian算法对生成的聚类个体进行重新标记,计算每个样本点关于每一个类别所占的比例,得到一个成分向量,然后运用对数比变换将所得的成分向量映射到另一个空间,去除成分数据的不适定性,最后对映射后的数据进行聚类,从而得到最终的集成结果.通过对UCI数据集和纹理图像的仿真实验表明,所提算法的聚类准确率与常用的共识函数具有一定的可比性,且运算代价较小,所需时间大约为MCLA算法的一半,同时避免了精确选择谱聚类算法的尺度参数. 相似文献
2.
基于局部线性嵌入的半监督仿射传播聚类算法 总被引:1,自引:0,他引:1
针对运用半监督仿射传播聚类算法处理高维数据时聚类精度低和计算量大的问题,提出一种基于局部线性嵌入的半监督仿射传播聚类算法.该算法首先通过LLE算法将高维输入数据集映射到低维空间得到低维数据集,计算低维数据集的相似度矩阵,再用半监督算法调整相似度矩阵,最后用仿射传播聚类算法对低维数据进行聚类分析.仿真结果表明,本文提出的算法与半监督仿射传播聚类算法相比,在处理高维数据时聚类效果更好,精度更高,迭代次数更少. 相似文献
3.
《西安交通大学学报》2017,(3)
针对目前流聚类算法无法有效处理数据流离群点的检测和处理,以及增量式数据流聚类效率较低等问题,提出了一种基于密度度量的异常检测、删除的增强型仿射传播流聚类算法。在仿射传播流聚类算法的基础上,所提算法通过引进异常检测和删除机制改善了异常点对聚类精度、聚类效率的影响。利用仿射传播聚类实现在线数据流的聚类过程,同时检测数据漂移现象,即数据流分布特征随时间发生变化,并采用基于密度度量的局部异常因子检测技术(LOF)对储备池数据进行异常检测和删除处理,通过对当前类簇和处理过的储备池数据重聚类来重建动态数据流模型。在真实网络数据(KDD’99)上进行了实验,结果表明,所提算法不仅减少了重聚类构建动态模型的次数,改善了聚类效率,而且在同时考虑聚类精度、纯度和熵3种聚类评价标准下,均优于传统的仿射传播流聚类算法。 相似文献
4.
聚类集成的目的是通过集成多个不同的基聚类来生成一个更好的聚类结果,近年来研究者已经提出多个聚类集成算法,但是目前仍存在的局限性是这些算法大多把每个基聚类和每个簇都视为同等重要,使聚类结果很容易受到低质量基聚类和簇的影响.为解决这个问题,研究者提出一些给基聚类加权的方法,但大多把基聚类看作一个整体而忽视其中每个簇的差异.... 相似文献
5.
基于图的标签传播算法是半监督学习中的研究热点之一,其性能很大程度依赖于图的质量.为了应对这一问题,文章提出了基于聚类的标签集成传播算法.该算法对样本集进行多次聚类,在每次聚类产生的簇中,利用互补熵度量簇内样本标签的混乱程度,并在混乱程度较小的簇中进行标签传播,当一个未标记样本获得某个标签的次数与聚类次数的比值大于50%... 相似文献
6.
为了进一步提高网络入侵检测的效果,提出一种基于聚类集成的入侵检测算法。首先利用Bagging算法从训练集中生成多个训练子集。然后调用模糊C均值聚类算法训练并生产多个基本聚类器。然后利用信息论构造适应度函数。采用粒子群算法从上述聚类集体中获得一个具有最优性能的集成聚类器。仿真实验结果表明,该算法能有效的提高入侵检测的精度,具有较高的泛化性和和稳定性。 相似文献
7.
传统图像分割方法大都存在分割速度低下、过度分割等缺点.针对上述问题,提出一种新的彩色图像区域分割算法.这种方法首先将图像转化至L*a*b*空间,并划分为子块,抽取图像子块的颜色、纹理和位置特征组成子块的特征向量,然后运用减法聚类,获得聚类簇数和初始蔟中心,最后利用改进的K均值算法在像素点特征空间进行聚类,进而分割图像成区域.实验结果表明这种新方法具有分割效率高、分割效果理想等优点. 相似文献
8.
9.
一种改进的PSO-Means聚类优化算法 总被引:1,自引:0,他引:1
针对粒子群优化算法在线性不可分情况下不能找到合适的聚类初始质心和正确的聚类个数的缺点,提出引入核方法,对基于粒子群算法的K均值聚类(PSO-Means)算法进行改进。利用核方法把数据映射到高维空间,在高维空间中使用粒子群算法找出所应聚的类,最后利用核空间中的聚类算法对数据进行聚类。通过实验,验证了该算法在线性不可分的情况下可以较好的运行,在很大程度上提高了聚类的效果。 相似文献
10.
人工免疫C-均值聚类算法 总被引:13,自引:0,他引:13
通过借鉴生物免疫系统中的克隆选择原理和记忆机制,提出了一种人工免疫C-均值混合聚类算法.该算法采用了新的克隆选择方法,通过亲和度排序和个体浓度定义了个体的选择概率,从而可确定个体的适应值评价函数,以评价和选择个体.算法还集成了一种C-均值搜索算子,用于加快收敛速度.在聚类数目已知的情况下,所提算法能够得到给定数据集下的全局最优划分,与基于遗传算法的聚类方法比较,它具有更快的收敛速度和更高的收敛精度,并可扩展到性能指标能够表示为优化聚类中心函数的聚类模型之中.仿真结果表明,所提算法是有效性的. 相似文献
11.
针对传统吸引子传播算法(AP)聚类性能受偏向参数影响较大的问题, 提出一种改进的吸引子传播算法, 即基于稳定阈值的吸引子传播聚类算法(STAP). 该算法通过稳定阈值, 衡量获得真实类数时的收敛状态, 然后捕捉该状态下的偏向参数; 为加快算法的收敛速度, 采用S型函数作为收敛因子调节阻尼系数. 仿真模拟实验结果表明, 与传统吸引子传播聚类算法相比, 基于稳定阈值的吸引子传播聚类算法聚类精度更高, 收敛速度更快. 相似文献
12.
在近邻传播聚类算法基础上提出了基于偏向参数p可变的分簇路由算法CPAP,该算法针对异构无线传感器网络的特殊背景,改变AP算法偏向参数p的常规设置方式,综合考虑能量、距离因素解决分簇问题;另外,分析了算法中K参数的影响,取得其近似最优值。仿真结果表明:CPAP与PECBA相比,第一死亡节点出现时间推迟了28.5%,将更多的能量用于网络开始死亡之前,提高了网络的能量利用率。 相似文献
13.
于祥 《盐城工学院学报(自然科学版)》2020,33(4):18-23
基于提供的11种聚类外部指标来组合多个聚类,通过单个对象的簇标记变化递增地更新目标函数来求出共识聚类,并利用模拟退火优化算法框架来解决局部最优问题。在UCI和TREC数据库中选取10个数据集进行几种算法的外部指标聚类性能评估实验,从实验数据的归一化角度和排序角度评估不同外部指标的聚类性能,结果表明:MSS3指标从整体性能表现上最适合用于引导聚类集成,可以作为算法默认的共识函数;基于模拟退火优化算法的聚类集成算法在7个数据集上优于其他聚类方法,而DBSCAN、MCLA、Kmearns算法则在其余3个数据集上表现最好。 相似文献
14.
提出一种基于力的类同传播聚类方法AFAPC.依据万有引力定律,根据数据间的相互引力,并在数据组成的网络中交替传递类同信息,计算出数据的聚类和对应的聚类中心.实验结果表明,AFAPC能在更短的时间内,取得与类同传播聚类算法APC相媲美的聚类效果. 相似文献
15.
A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve accuracy of the algorithm,it introduces the idea of layered combination, divides an affinity propagation clustering( APC) process into several hierarchies evenly,draws samples from data of each hierarchy according to weight,and executes semi-supervised learning through construction of pairwise constraints and use of submanifold label mapping,weighting and combining clustering results of all hierarchies by combined promotion. It is shown by theoretical analysis and experimental result that clustering accuracy and computation complexity of the semi-supervised affinity propagation clustering algorithm based on layered combination( SAP-LC algorithm) have been greatly improved. 相似文献
16.
文中提出一种半监督核信任力传播聚类算法(SSKAPC).SSKAPC在对样本聚类的过程中,引入先验知识提高聚类性能;同时该算法将样本映射到高维空间进行聚类.人工数据和真实世界数据的实验表明,SSKAPC算法能大幅度提高聚类的准确性. 相似文献
17.
针对传统的多模型建模方法在聚类过程中不考虑模型的输出误差而导致最终的模型存在较大误差的问题,提出了一种带监督的仿射传播聚类多模型建模方法.该方法先由仿射传播聚类算法得到初始聚类,然后,根据输出误差对聚类进行循环调整至各类别不再变化为止,最后,得到准确划分的聚类并采用最小二乘支持向量机建立子模型来实现对输出的估计,并将本文的建模方法应用到某双酚A反应釜出口丙酮含量的软测量建模中进行仿真.结果表明,该方法可以获得比传统的多模型建模方法更好的建模效果. 相似文献
18.
《河南师范大学学报(自然科学版)》2015,(6):134-140
聚类是识别基因表达数据蕴含的关键基因调控模块的一种有效方法,基因表达谱的相似性度量是聚类的关键问题.然而,一般的相似性度量方法不能刻画时间序列基因表达谱数据所蕴含的时间延迟、反向相关和局部相关等复杂的基因调控关系.针对时间序列基因表达谱数据,提出一种基于近邻传播和动态规划的相似性度量方法和聚类算法.在大鼠再生肝细胞基因表达谱数据集上的聚类结果与基因功能富集分析结果高度一致,证明算法在时间序列基因表达谱数据聚类上的有效性. 相似文献
19.
Clustering categorical data, an integral part of data mining, has attracted much attention recently. In this paper, the authors formally define the categorical data clustering problem as an optimization problem from the viewpoint of cluster ensemble, and apply cluster ensemble approach for clustering categorical data. Experimental results on real datasets show that better clustering accuracy can be obtained by comparing with existing categorical data clustering algorithms. 相似文献
20.
基于聚类算法的选择性神经网络集成 总被引:11,自引:0,他引:11
为了提高集成个体的差异度,提出了一种利用聚类算法去除冗余个体的选择性集成方法,该方法通过使用神经网络作为基学习器,并在多值分类数据集上进行实验.结果表明,该技术计算效率高,精度与稳健性也与基于遗传算法的选择性集成方法相当甚至占优. 相似文献