首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
仿射传播聚类算法已经被广泛应用于各个领域,其源码被Toronto大学公开在网络中。针对公开源码中如何选择阻尼因子的值以平衡算法震荡与收敛速度的问题,提出一种自适应阻尼因子的仿射传播聚类算法。所提算法通过监视算法的震荡情况,自适应调整阻尼因子的值,相比公开源码中的固定阻尼策略,不仅可以有效避免震荡,且可以很大程度地保持阻尼因子较小时的收敛速度。通过多个UCI公开数据集试验证明了所提算法的有效性。  相似文献   

2.
针对谱聚类算法对尺度参数敏感的问题,利用集成学习算法良好的鲁棒性和泛化能力,提出了一种无监督集成学习算法——谱聚类集成算法.该算法先利用谱聚类的内在特性产生集成学习所需的多个聚类个体,再采用Hungarian算法对生成的聚类个体进行重新标记,计算每个样本点关于每一个类别所占的比例,得到一个成分向量,然后运用对数比变换将所得的成分向量映射到另一个空间,去除成分数据的不适定性,最后对映射后的数据进行聚类,从而得到最终的集成结果.通过对UCI数据集和纹理图像的仿真实验表明,所提算法的聚类准确率与常用的共识函数具有一定的可比性,且运算代价较小,所需时间大约为MCLA算法的一半,同时避免了精确选择谱聚类算法的尺度参数.  相似文献   

3.
基于局部线性嵌入的半监督仿射传播聚类算法   总被引:1,自引:0,他引:1  
针对运用半监督仿射传播聚类算法处理高维数据时聚类精度低和计算量大的问题,提出一种基于局部线性嵌入的半监督仿射传播聚类算法.该算法首先通过LLE算法将高维输入数据集映射到低维空间得到低维数据集,计算低维数据集的相似度矩阵,再用半监督算法调整相似度矩阵,最后用仿射传播聚类算法对低维数据进行聚类分析.仿真结果表明,本文提出的算法与半监督仿射传播聚类算法相比,在处理高维数据时聚类效果更好,精度更高,迭代次数更少.  相似文献   

4.
针对目前流聚类算法无法有效处理数据流离群点的检测和处理,以及增量式数据流聚类效率较低等问题,提出了一种基于密度度量的异常检测、删除的增强型仿射传播流聚类算法。在仿射传播流聚类算法的基础上,所提算法通过引进异常检测和删除机制改善了异常点对聚类精度、聚类效率的影响。利用仿射传播聚类实现在线数据流的聚类过程,同时检测数据漂移现象,即数据流分布特征随时间发生变化,并采用基于密度度量的局部异常因子检测技术(LOF)对储备池数据进行异常检测和删除处理,通过对当前类簇和处理过的储备池数据重聚类来重建动态数据流模型。在真实网络数据(KDD’99)上进行了实验,结果表明,所提算法不仅减少了重聚类构建动态模型的次数,改善了聚类效率,而且在同时考虑聚类精度、纯度和熵3种聚类评价标准下,均优于传统的仿射传播流聚类算法。  相似文献   

5.
聚类集成是聚类分析中的一个重要技术手段,能有效地提高聚类结果的准确性、鲁棒性和稳定性。利用现有的聚类准则提出了一个新的评价指标,用于基聚类结果的有效性评估,并把评估值作为基聚类结果的权重来进行加权聚类集成。在UCI真实数据集上对提出的基于聚类准则融合的加权聚类集成算法进行了测试,实验表明新提出的算法比已有的集成聚类算法具有更高的准确率和回收率,可以得到更好的集成聚类结果。  相似文献   

6.
聚类集成的目的是通过集成多个不同的基聚类来生成一个更好的聚类结果,近年来研究者已经提出多个聚类集成算法,但是目前仍存在的局限性是这些算法大多把每个基聚类和每个簇都视为同等重要,使聚类结果很容易受到低质量基聚类和簇的影响.为解决这个问题,研究者提出一些给基聚类加权的方法,但大多把基聚类看作一个整体而忽视其中每个簇的差异....  相似文献   

7.
基于图的标签传播算法是半监督学习中的研究热点之一,其性能很大程度依赖于图的质量。为了应对这一问题,文章提出了基于聚类的标签集成传播算法。该算法对样本集进行多次聚类,在每次聚类产生的簇中,利用互补熵度量簇内样本标签的混乱程度,并在混乱程度较小的簇中进行标签传播,当一个未标记样本获得某个标签的次数与聚类次数的比值大于50%时,将该样本标记为这一标签,迭代运行聚类与标签传播,直至所有未标记样本都获得标签。该算法可以在一定程度上缓解基于图的标签传播算法的构图困难引起的问题。在5个UCI数据集上的实验结果表明,与4种经典的基于图的标签传播算法相比,文章提出的算法在分类准确率上提升了1% ~ 9%。  相似文献   

8.
赵晖 《科学技术与工程》2012,12(23):5797-5800
为了进一步提高网络入侵检测的效果,提出一种基于聚类集成的入侵检测算法。首先利用Bagging算法从训练集中生成多个训练子集。然后调用模糊C均值聚类算法训练并生产多个基本聚类器。然后利用信息论构造适应度函数。采用粒子群算法从上述聚类集体中获得一个具有最优性能的集成聚类器。仿真实验结果表明,该算法能有效的提高入侵检测的精度,具有较高的泛化性和和稳定性。  相似文献   

9.
传统图像分割方法大都存在分割速度低下、过度分割等缺点.针对上述问题,提出一种新的彩色图像区域分割算法.这种方法首先将图像转化至L*a*b*空间,并划分为子块,抽取图像子块的颜色、纹理和位置特征组成子块的特征向量,然后运用减法聚类,获得聚类簇数和初始蔟中心,最后利用改进的K均值算法在像素点特征空间进行聚类,进而分割图像成区域.实验结果表明这种新方法具有分割效率高、分割效果理想等优点.  相似文献   

10.
人工免疫C-均值聚类算法   总被引:13,自引:0,他引:13  
通过借鉴生物免疫系统中的克隆选择原理和记忆机制,提出了一种人工免疫C-均值混合聚类算法.该算法采用了新的克隆选择方法,通过亲和度排序和个体浓度定义了个体的选择概率,从而可确定个体的适应值评价函数,以评价和选择个体.算法还集成了一种C-均值搜索算子,用于加快收敛速度.在聚类数目已知的情况下,所提算法能够得到给定数据集下的全局最优划分,与基于遗传算法的聚类方法比较,它具有更快的收敛速度和更高的收敛精度,并可扩展到性能指标能够表示为优化聚类中心函数的聚类模型之中.仿真结果表明,所提算法是有效性的.  相似文献   

11.
在近邻传播聚类算法基础上提出了基于偏向参数p可变的分簇路由算法CPAP,该算法针对异构无线传感器网络的特殊背景,改变AP算法偏向参数p的常规设置方式,综合考虑能量、距离因素解决分簇问题;另外,分析了算法中K参数的影响,取得其近似最优值。仿真结果表明:CPAP与PECBA相比,第一死亡节点出现时间推迟了28.5%,将更多的能量用于网络开始死亡之前,提高了网络的能量利用率。  相似文献   

12.
A clustering algorithm for semi-supervised affinity propagation based on layered combination is proposed in this paper in light of existing flaws. To improve accuracy of the algorithm,it introduces the idea of layered combination, divides an affinity propagation clustering( APC) process into several hierarchies evenly,draws samples from data of each hierarchy according to weight,and executes semi-supervised learning through construction of pairwise constraints and use of submanifold label mapping,weighting and combining clustering results of all hierarchies by combined promotion. It is shown by theoretical analysis and experimental result that clustering accuracy and computation complexity of the semi-supervised affinity propagation clustering algorithm based on layered combination( SAP-LC algorithm) have been greatly improved.  相似文献   

13.
提出一种基于力的类同传播聚类方法AFAPC.依据万有引力定律,根据数据间的相互引力,并在数据组成的网络中交替传递类同信息,计算出数据的聚类和对应的聚类中心.实验结果表明,AFAPC能在更短的时间内,取得与类同传播聚类算法APC相媲美的聚类效果.  相似文献   

14.
文中提出一种半监督核信任力传播聚类算法(SSKAPC).SSKAPC在对样本聚类的过程中,引入先验知识提高聚类性能;同时该算法将样本映射到高维空间进行聚类.人工数据和真实世界数据的实验表明,SSKAPC算法能大幅度提高聚类的准确性.  相似文献   

15.
聚类是识别基因表达数据蕴含的关键基因调控模块的一种有效方法,基因表达谱的相似性度量是聚类的关键问题.然而,一般的相似性度量方法不能刻画时间序列基因表达谱数据所蕴含的时间延迟、反向相关和局部相关等复杂的基因调控关系.针对时间序列基因表达谱数据,提出一种基于近邻传播和动态规划的相似性度量方法和聚类算法.在大鼠再生肝细胞基因表达谱数据集上的聚类结果与基因功能富集分析结果高度一致,证明算法在时间序列基因表达谱数据聚类上的有效性.  相似文献   

16.
Clustering categorical data, an integral part of data mining, has attracted much attention recently. In this paper, the authors formally define the categorical data clustering problem as an optimization problem from the viewpoint of cluster ensemble, and apply cluster ensemble approach for clustering categorical data. Experimental results on real datasets show that better clustering accuracy can be obtained by comparing with existing categorical data clustering algorithms.  相似文献   

17.
基于聚类算法的选择性神经网络集成   总被引:11,自引:0,他引:11  
为了提高集成个体的差异度,提出了一种利用聚类算法去除冗余个体的选择性集成方法,该方法通过使用神经网络作为基学习器,并在多值分类数据集上进行实验.结果表明,该技术计算效率高,精度与稳健性也与基于遗传算法的选择性集成方法相当甚至占优.  相似文献   

18.
研究表明,具有较大边际分别的组合分类器泛化性能更高.根据该结论,论文构造了一个新的基于边际的度量指标(MM)以充分考虑基分类器和组合分类器的分类能力,进而提出了一种新的组合分类器选择方法.该方法初始化组合分类器为空(或满),迭代的加入(或移除)具有最大(或最小)MM值的分类器,以降低组合分类器规模并提高它的分类准确率.在随机选择的24个UCI数据集上的实验表明,与其他一些高级的贪心组合选择算法相比,该方法具有更好的泛化能力.  相似文献   

19.
分析了k-means算法的缺陷、入侵检测特点和网络中数据的特点,提出了一种基于密度的无监督2次聚类算法—KD算法。该算法聚类使用改进的k-means算法并引入基于密度聚类算法的优点,以提高对单种入侵数据集及混合入侵数据集的检测效果。实验结果表明,该算法具有较高的检测率和较低的误检率。  相似文献   

20.
Support vector machines (SVMs) have been introduced as effective methods for solving classification problems. However, due to some limitations in practical applications, their generalization performance is sometimes far from the expected level. Therefore, it is meaningful to study SVM ensemble learning. In this paper, a novel genetic algorithm based ensemble learning method, namely Direct Genetic Ensemble (DGE), is proposed. DGE adopts the predictive accuracy of ensemble as the fitness function and searches a good ensemble from the ensemble space. In essence, DGE is also a selective ensemble learning method because the base classifiers of the ensemble are selected according to the solution of genetic algorithm. In comparison with other ensemble learning methods, DGE works on a higher level and is more direct. Different strategies of constructing diverse base classifiers can be utilized in DGE. Experimental results show that SVM ensembles constructed by DGE can achieve better performance than single SVMs, hagged and boosted SVM ensembles. In addition, some valuable conclusions are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号