首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
将水热法制备的负载型凹凸棒黏土-Mn_3O_4(Att-Mn_3O_4)复合材料用做超级电容电极材料,采用X射线衍射(XRD)、扫描电镜(SEM)测试对材料的物相及形貌进行了表征.发现Mn_3O_4基本呈棒状结构,较好地分散负载在凹凸棒黏土表面.以该复合材料为活性物质制成电极,采用循环伏安、恒流充放电等电化学方法考察其电化学性能,结果表明:在0.5 mol·L~(-1)的Na_2SO_4溶液中,0~1.0 V扫描电位范围内,其循环伏安曲线矩形特征明显;在0.5 A·g~(-1)电流密度下,电容器充放电性能的最佳电位范围为0~1.0 V,比电容和储能密度达到最大值分别为80.25 F·g~(-1)和250.80 W·kg~(-1),而纯Mn_3O_4电极材料的比电容为40.80 F·g~(-1).可见凹凸棒黏土的加入可以明显提高其电化学性能.恒电流充放电性能测试表明,该复合材料具有较好的电化学稳定性,有望成为一种新型的超级电容器电极材料.  相似文献   

2.
采用水热合成和煅烧制备氧化钴/碳(Co3O4/C)复合材料,通过SEM、XRD、N2吸附实验等对该材料进行表征.制备的Co3O4/C复合材料为5μm大小,孔径约为30nm的多孔球形结构.在6mol/L的氢氧化钾溶液中进行电化学测试.结果表明,Co3O4/C复合材料具有良好的电容性能.在电流密度为1A/g时,比电容为143F/g.此外,Co3O4/C复合材料还表现出良好的循环稳定性,在1A/g的电流密度下,充放电循环1000次后,比电容保持率为77.8%.  相似文献   

3.
采用层-层自组装法制备了前驱体RGO/Ni-Co@Ni-foam(泡沫镍负载石墨烯/镍-钴金属化合物),并在高温下煅烧得到RGO/NiCo_2O_4@Ni-foam复合电极材料。运用X射线衍射仪、扫描电子显微镜以及能谱仪对多孔RGO/NiCo_2O_4@Ni-foam复合材料进行结构表征,并通过循环伏安、恒流充放电等测试方法考察了其作为电极材料的电化学性能。结果表明,制备的多孔RGO/NiCo_2O_4@Ni-foam复合电极材料的比电容在电流密度为0.5A/g时可达到444F/g,并且在经过1 000次循环实验后,比电容仍有342F/g。这表明多孔RGO/NiCo_2O_4@Ni-foam复合材料在超级电容器领域具有广阔的应用前景。  相似文献   

4.
采用水热法合成Ni(OH)_2-VS_2纳米复合材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)等对复合材料物相及形貌进行表征.将所得的复合材料用作超级电容器电极材料,通过循环伏安法、恒电流充放电法以及交流阻抗法对Ni(OH)_2-VS_2纳米复合材料的电化学性能进行评价.同时探讨了Ni(OH)2与VS2的不同质量比对复合材料电化学性能的影响.结果表明:Ni(OH)2与VS2的质量比为5∶1时所制备的Ni(OH)_2-VS_2纳米复合材料具有更优异的电化学性能.在电流密度为1A/g时,比电容最高可达到4021F/g,且在电流密度为5A/g下进行500次充放电测试,电容保持率仍在80%以上.  相似文献   

5.
以KMnO4、H2O2和(NH4)6Mo7O24.4H2O为原料,制备了MnO2-MoO3前驱物,并将其用氨水溶解,得到非晶MnO2。用XRD、TEM及EDAX进行了表征,样品为非晶MnO2。用电极循环伏安研究其电容性能:在1 mol.L-1Na2SO4溶液中,电位窗口为-0.2~0.8 V(vs SEC)范围内,5 mV.s-1的扫描速度下,制备的非晶MnO2比电容为356.72 F.g-1,经过100次循环后,电容量仅下降了5.5%,具有良好的可逆循环性能。  相似文献   

6.
本文通过水热辅助真空冻干法制备得到了可以自支撑的石墨烯/二氧化锰(GN/MnO_2)复合材料,利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分别对复合材料结构与形貌进行表征,并以复合材料为工作电极,组装成对称电容器,探究反应物质量比与电解液对材料电化学性能的影响,结果表明:在KOH电解液中,复合材料的比电容最大;当反应物质量比为1∶4时,该复合材料比电容可以达到224F/g(电流密度为1A/g).  相似文献   

7.
利用低温水热法在碳布(CC)表面一步法生长MnO_2纳米颗粒,通过控制水热反应时间,制备了一系列MnO_2/碳布复合材料.通过场发射扫描电子显微镜、X射线衍射、拉曼光谱、X射线光电子能谱分析了不同复合材料的形貌与结构,同时利用恒流充放电、循环伏安、交流阻抗方法对所制备的复合材料进行了电化学性能的测试.结果表明,碳布表面的性质和反应时间对MnO_2生长形貌和厚度具有一定的影响,从而造成复合材料电化学性能的改变.电化学性能测试显示,经0.50h反应所得的MnO_2/碳布复合材料在0.2 mA/cm~2充放电电流下,面积比电容达到76.9 mF/cm~2,经过1 700次循环测试后其面积比电容仍保留原来的89%.以碳布为基材大大缩短了离子传输和电荷转移路径,从而使得复合材料呈现良好的电化学性能.  相似文献   

8.
本文以活性中间相炭微球为基底,过硫酸铵(APS)为氧化剂,通过原位化学聚合法聚合苯胺,得到聚苯胺/活性中间相炭微球复合材料(PANI/A-MCMB),采用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)对其形貌和结构进行表征。以PANI/A-MCMB复合物为电极活性物质,1.0 mol/L H_2SO_4水溶液为电解液,组装对称型超级电容器,用循环伏安法(CV)、电化学交流阻抗(EIS)、恒流充放电(GCD)等测试手段测试超级电容器的电化学性能。实验结果表明,电流密度恒为0.1A/g时,PANI/A-MCMB复合材料单电极比容量为301.6F/g,1 000次循环后比容量为276.3F/g,比电容保持率为91.6%,较PANI材料(比容量为228F/g,1 000次循环后比电容保持率为39.5%)具有更好的比容量和循环稳定性。  相似文献   

9.
采用2步水热法制备出1种以NiCo_2O_4纳米线为核,MnO_2纳米颗粒为壳的三维结构MnO_2@NiCo_2O_4@Ni-foam复合材料。通过X射线衍射(XRD),扫描电子显微镜(SEM)对复合催化剂的结构和形貌进行表征;通过循环伏安法(CV),恒流充放电性能(GCD)和电化学阻抗谱(EIS)来进行表征复合材料的电化学性能;通过O_3催化降解装置对复合材料的催化性能进行研究。结果表明:MnO_2@NiCo_2O_4@Ni-foam复合材料在频率范围为0.1~10 000 Hz时阻抗较低;通过降解实验发现,MnO_2@NiCo_2O_4@Ni-foam对O_3的降解率高于50%,表现出良好的催化效果。这表明MnO_2@NiCo_2O_4@Ni-foam复合材料在降解O_3,净化空气方面有广阔的应用前景。  相似文献   

10.
以(NH_4)_6Mo_7O_(24)·4H_2O为钼源,以Sn_Cl_2·2H_2O为锡源,采用简单的溶剂热法经低温退火合成SnO_2-MoO_3前驱体;再进一步与硫氰化钾水热反应经低温煅烧即可得到Sn/MoS_2复合物.通过XRD,SEM等对合成材料的结构和形貌进行表征,采用恒流充、放电系统对合成材料的电化学性能进行了测试.结果表明:所合成的纯MoS_2纳米结构在作为锂离子电池负极材料时,具有较高的初始放电容量,但循环性能较差.所制得的Sn/MoS_2复合材料,大大改善了MoS_2的循环性能.当电流密度为100 m A·g~(-1)时,在0. 01 3. 0 V的电压窗口下循环70次后,Sn/MoS_2复合物的放电容量可以保持在725 m Ah·g~(-1),具有较高的可逆比容量和优良的循环性能,为研究高比容量和循环性能稳定的新型锂离子电池负极材料提供了实践依据.  相似文献   

11.
在过渡金属氧化物中,二氧化锰(MnO_2)是法拉第电容器的重要电极材料,因其具有易得、价廉、无毒、环境友好等优点,近年来一直是电化学储能电极材料的研究热点.以Ni网为基底,通过一步电化学沉积的方法制备了具有球形结构的MnO_2粒子,基底良好的导电性以及复合材料的3维结构使得在电化学反应时增加了电极材料与电解液的接触面积,因而使得电极的电化学性能大幅度提高:该电极在200 mA·g~(-1)的电流密度下的首次放电比电容达到146.9 F·g~(-1),且经过1 000次循环后,比电容保持率为91.1%,显示出较高的放电比容量和良好的循环性能.  相似文献   

12.
以NH_4VO_3为钒源,1-乙烯基咪唑(vIM)为配体,与CoCl_2·6H_2O在水热条件下反应合成了新型无机-有机杂化的钴钒酸盐Co_4(vIM)_(14)[V_4O_(12)]_2·6H_2O (1),利用X-射线单晶衍射(SXRD)、X-射线粉末衍射(PXRD)、红外光谱(FT-IR)以及元素分析(EA)等表征了其结构.我们进一步考察了化合物1在选择性氧化降解化学战剂芥子气类似物2-氯乙基乙基硫醚(CEES)反应中的催化性能.实验结果表明,在优化条件下,以H_2O_2为氧化剂,化合物1对CEES的选择性氧化表现出良好的催化活性,而化合物1作为非均相催化剂经3轮催化循环后活性及选择性都没有明显降低.  相似文献   

13.
以二水合钼酸钠(Na_2MoO_4·2H_2O)、四水合钼酸铵((NH_4)_6Mo_7O_(24)·4H_2O)作为钼源,硫脲(NH_2CSNH_2)为硫源,葡萄糖为碳源,采用水热法制备了二硫化钼(MoS_2)/C复合材料。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等分析方法对MoS_2/C复合材料的结构和形貌进行了表征,并对其电化学性能进行测试。结果表明:水热法合成的两种复合材料均为纳米片无序堆叠而成的蠕虫状结构,其中钼酸钠为钼源时呈微球状。将其用作负极材料时,钼酸钠作钼源性能更佳,其在电流密度为200 m A/g的情况下首次放电比容量为766 m Ah/g,库伦效率为78.3%,循环100次后容量保持在524 m Ah/g左右,其倍率性能优异。  相似文献   

14.
利用机械搅拌物理混合、热解法成功制备了Fe_3O_4/ZnO复合材料,将Fe_3O_4粒子与一定量的Zn(CH_3COO)_2·2H_2O在无水乙醇中充分混合,并将混合物在氩气氛围下进行500℃热处理使其Zn(Ac)_2·2H_2O分解,从而得到Fe_3O_4/ZnO复合材料。采用SEM、XRD、XPS对样品形貌、结构及表面进行分析,通过矢量网络分析仪研究了不同量的Zn(CH_3COO)_2·2H_2O对样品吸波性能的影响。结果表明,当Fe_3O_4与Zn(CH_3COO)_2·2H_2O的质量比为1∶2时,Fe_3O_4/ZnO复合材料的吸波性能远优于纯相Fe_3O_4。当频率为11 GHz,涂层厚度为3 mm时,最佳反射率达-14.4 dB。  相似文献   

15.
以FeSO_4、LiOH和NH_4H_2PO_4为原料,控制反应物物质的量之比n(Li~+)∶n(Fe~(2+))∶n(PO_4~(3+))=3∶1∶1,采用水热法制备磷酸铁锂(LiFePO_4)颗粒,并对合成工艺进行优化;以LiFePO_4为填料,将LiFePO_4加入聚酰亚胺(PI)凝胶材料中,采用高温热解工艺制备LiFePO_4改性聚酰亚胺凝胶碳化材料。通过傅里叶变换红外光谱仪(FT-IR)、X线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面积孔隙分析仪及电化学工作站对LiFePO_4的结构、形貌及复合材料的电化学性能进行表征。LiFePO_4颗粒的最优制备条件如下:加料顺序为LiOH、NH_4H_2PO_4、抗坏血酸(C_6H_8O_6)、FeSO_4,FeSO_4的浓度为0.2 mol/L,n(C_6H_8O_6)/n(Fe~(2+))=0.5,反应温度为160℃,反应时间为3 h。结果表明:在最优条件下制备的LiFePO_4颗粒呈现规则的球型结构,一致性较好,表面较为光滑;以PI改性凝胶碳化材料作为电极,其比电容达到152.5 F/g,随着电流密度增加,比电容保持率为88.5%(从152.5 F/g变化到135 F/g),表现出较好的电化学稳定性。采用此电极材料构成的充放电装置,具有较小的内阻,且表现出较好的离子扩散效应。  相似文献   

16.
以改进的Hummer法制备氧化石墨(GO),用原位聚合法合成聚吡咯/氧化石墨(Ppy/GO)复合物,运用CV和CP法测试电化学性能,并以XRD,FTIR,SEM分析材料的结构形貌.结果表明:(1)Ppy/GO复合物具有较好的电化学电容性能.当电流密度为0.5A.g-1时,复合物在1mol.L-1 H2SO4溶液中的比电容可达358.93F.g-1.(2)Ppy/GO复合物较Ppy有更好的循环稳定性和倍率充放电性能.当扫描速率分别为10,20,50mV.s-1时,复合物电极的循环伏安曲线均呈现出良好的矩形特征,并能保持一致性,而在相同扫描速率下,Ppy的循环伏安曲线不稳定;当电流密度分别为1,2,5A.g-1时,复合物的比电容分别达204.71,130.82,60.21F.g-1,高于相同条件下Ppy的178.05,123.89,46.52F.g-1.以上说明将聚吡咯与氧化石墨形成复合物有利于改善聚吡咯的电化学电容性能.  相似文献   

17.
为了获得比电容大、工作稳定性高的柔性超级电容器,在碳纳米管膜上利用恒电流沉积法在不同沉积时间和沉积电流密度下沉积MnO_2,制备出了MnO_2/碳纳米管膜柔性超级电容器电极材料.分别利用扫描电镜和X线衍射对所得电极材料的形貌和结构进行表征,并通过恒电流充放电测试和交流阻抗谱研究了复合材料的电容性能.结果表明:复合材料的电容性能可以通过调节MnO_2的沉积电流密度和沉积时间来控制;沉积电流密度为1 A/g、沉积时间为20 min条件下制备所得MnO_2/碳纳米管膜复合材料的比电容可达356 F/g,是纯碳纳米管膜比电容的7.5倍.此外,MnO_2/碳纳米管膜复合材料的比电容经200次充放电循环后维持在初始值的96.6%,显示出良好的循环稳定性,在高性能柔性超级电容器应用方面展现了一定的前景.  相似文献   

18.
为了提高磷酸铁锂的能量密度,本文通过两步高温固相反应法合成了锂离子电池正极LiFePO_4/C复合材料,利用XRD、SEM、TEM等方法对该正极材料的晶体结构、表面形貌进行了分析研究。实验结果表明,LiFePO_4/C具有单一的橄榄石结构,通过掺杂前驱体10%(质量分数)的葡萄糖合成的材料具有良好的充放电性能和循环稳定性能球状,LiFePO4为锂离子的迁移和扩散提供了通道,有利于电化学性能的提升。在0.1 C倍率下进行充放电测试,首次放电比容量可达161 m Ahg-1,在2 C下循环了100次后复合材料的容量为148 m Ahg~(-1),库仑效率高达98%,结果表明碳包覆的LiFePO_4样品的电化学性能得到了很大提高。  相似文献   

19.
通过采用沉淀法在碳气凝胶表面负载金属氧化物三氧化二锰,制备得到Mn_2O_3/CRF复合材料。采用X射线衍射及电镜扫描等技术对所制备的复合材料进行结构形貌表征。实验结果发现碳气凝胶具有多重片层结构且孔隙发达。通过调节锰盐的含量考察三氧化二锰负载量对复合材料电化学性能的影响作用。采用循环伏安法及充放电测试对材料的电化学性能进行测试,结果表明Mn_2O_3/CRF复合材料具有良好的电容性及较好的可逆性。当Mn_2O_3含量达15%时复合材料的比电容最大,可达118.5 F/g。通过充放电测试1000次后发现该电极的比电容依然能够保持在一稳定值上,具有较好的稳定性。  相似文献   

20.
以层状膨胀石墨为模板,采用化学浴沉积法首次制备了α-Ni(OH)2/膨胀石墨(α-Ni(OH)2/EG)层状结构的纳米复合材料,分别利用扫描电镜、透射电镜、X射线衍射测试其表面形貌及结构.利用热重分析来检测α-Ni(OH)2在复合材料中的负载量.使用循环伏安和恒流充放电测试等表征其电化学性能.结果表明,制备的α-Ni(OH)2/EG纳米复合材料表现出了优异的电化学性能:在6mol/L KOH电解质溶液中的比电容达到1 180F/g(0.5A/g的电流密度),对应的有效α-Ni(OH)2比电容高达1 920F/g;同时,该复合材料在10A/g的大电流密度下依然能保持较高的比电容(585F/g).优秀的循环稳定性能进一步保证了其成为超级电容器电极材料的合适选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号