首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
容器内可燃气体燃爆温度与压力的计算方法   总被引:1,自引:0,他引:1  
对容器内可燃气体爆炸过程进行了热力学分析,得出可燃气体在容器内爆炸前后物质热力学能保持不变的结论。根据化工热力学能量守恒方程,推导出了两种容器内可燃气体爆炸温度和压力的计算方法。对几种可燃烃类气体进行了计算,其计算结果与文献值和实验值进行了比较分析,结果表明:燃爆温度的计算偏差为9.14%~11.15%,爆炸压力的计算偏差为5.84%~12.21%,说明了计算方法的有效性和实用性。结合计算实例对两种计算方法进行了阐述,计算结果基本一致。  相似文献   

2.
与常规钻井相比,气体钻井在提高机械钻速、发现和保护油气藏等方面优势明显,由于负压钻进时,地层流体极易进入井筒,地层产出的可燃气体和氧气混合后具有燃烧、爆炸的潜在危险,容易发生严重的灾害性事故,在气体钻井应用中往往需要充分预测和评估钻遇气层的危险程度并提前采取应对措施。结合气体钻井实际施工情况,简要介绍了气体钻井过程中井下燃爆方面的研究进展,分析了气体钻井过程中可燃气体发生燃爆的条件。并从混合可燃气体组成、温度、压力,以及惰性气体含量等几个方面,展开论述了爆炸极限的主要影响因素。依据经验公式计算了某井气体钻井过程中可燃气体爆炸极限的变化情况,得出可燃气体下限值随井深增加略有减小,可燃气体上限值随井深增加明显增大的结论。结合该井实际施工情况,验证了计算的可靠性,可以看出氮气钻井过程中的氧含量安全范围很窄(2.43%4.20%)。  相似文献   

3.
以自主设计的可燃气体爆炸极限测试装置为主线,介绍了常用爆炸极限测试装置的特点,分析了自主设计的可燃气体爆炸极限测试装置的优缺点,为爆炸极限的测试研究提供了一种新的测试方法及装置。通过对甲烷爆炸试验的研究,实现甲烷爆炸压力的实验值与文献值的标定,修正了系统的误差。  相似文献   

4.
瓦斯是煤矿持有的呵燃、可爆性气体,瓦斯爆炸是煤矿最严重的灾害性事故.近几年,我国煤矿瓦斯爆炸重特大事故频频发生,煤矿井下安全越来越引起人们的关注.实践表明,确定爆炸性气体的爆炸极限,对防止该类事故是非常重要的.选择爆炸性混合气体CH4+2O2,用各种适用的方法计算其爆炸极限并对不同浓度瓦斯的反应热力学温度进行了计算,期望为减少或防止煤炭工业生产中爆炸事故的发生提供一定的参考.  相似文献   

5.
通过实验分析了可燃气体(液体蒸汽)的爆炸极限规律,同时独到地分析了各浓度可燃气体(液体蒸汽)的最大允许氧含量的规律;通过爆炸极限和最大允许氧含量规律的对比研究,分析了两者的影响因素,指出两者从不同角度界定了可燃气体(液体蒸汽)的爆炸范围。  相似文献   

6.
本文从热力学第二定律出发,分析了可燃气体的爆炸过程,借助孤立熵增原理,建立了单组分气体爆炸极限的计算公式,进行了实例验算,对计算结果的普适性和精确度进行了分析评价,从而为可燃气体的爆炸极限计算提供了科学的定量依据。  相似文献   

7.
描述了可燃气体爆炸极限的概念,对一般可燃气体爆炸极限的计算给出了推荐公式,阐述了影响燃气爆炸极限的因素和可燃气体爆炸极限的估算步骤。  相似文献   

8.
可燃性气体具有易燃、易爆的特性,如果大量泄漏,气体大量积聚,当浓度达到爆炸极限遇明火时,就会引起火灾或爆炸事故,严重的会造成人员伤亡和财产损失,因此,正确地使用与维护可燃气体报警器,保证其可靠运行就成为十分重要的意义。本文针对可燃气体检测报警器的检定进行了探讨。  相似文献   

9.
最小氧气浓度是可燃气体和液体蒸气的重要安全参数之一.对最小氧气浓度的理论计算方法进行了研究,同时对最小氧气浓度的影响因素进行了分析探讨,得出它要受到温度、压力和惰性气体等因素的影响.阐明了最小氧气浓度与爆炸下限是一一对应的关系;使用理论计算值应注意附加一定的安全系数;可通过减少反应中氧浓度、降压、降温、加入惰性气体等办法.以缩小爆炸极限范围、增大最小氧气浓度.从而将其控制在爆炸范围之外.图1.表4,参9.  相似文献   

10.
天然气爆炸严重危害社会稳定和市民的生命财产安全,管道内天然气爆炸特性的研究对企业的安全生产和社会稳定具有重要意义。本文基于受限空间可燃气体爆炸传播的特点和机理,系统介绍专业爆炸分析数值模拟软件FLACS的功能,并探讨其在球状、管状、罐状空间内可燃气体爆炸事故中的应用,总结FLACS软件的优势和发展前景,为天然气产业安全与发展提供了理论支持。  相似文献   

11.
利用自主开发的实验装置,测定了20,60,100,150,200℃及常压,100,200和300 kPa初始条件下煤层气(CBM)的爆炸极限值.结果表明,随初始温度和压力的增加,爆炸极限上限变大,下限变小,爆炸极限范围变大,危险性增加;初始温度和压力对爆炸极限上限的影响大于对爆炸极限下限的影响.研究结论为CBM开发使用过程安全工艺参数的确定提供了实验依据.  相似文献   

12.
氢气及重烃组分对瓦斯爆炸下限影响的实验研究   总被引:3,自引:1,他引:2  
为研究矿井瓦斯中含有的氢气及重烃组分对瓦斯爆炸下限的影响,建立了多组分瓦斯混合气体爆炸实验系统.运用该实验系统对分别混有氢气、异丁烷和正己烷的甲烷气体的爆炸下限进行了测定.实验结果表明:强点火源条件下,当混有氢气的体积分数达到1.5%时,甲烷的爆炸下限可以降到1%;当异丁烷和正己烷的体积分数约为0.25%时,甲烷的爆炸下限可降到2%左右.图8,表5,参10.  相似文献   

13.
鉴于当前紧迫的HCFCs淘汰形势,很多学者针对替代潜力较大的HFC161和HC1150的热力性质、循环性能以及常温下可燃性等进行了研究,然而针对变温工况下上述可燃制冷剂爆炸极限影响规律的研究却极为少见.为此,本课题组建立了一套由上位机自动控制的可燃气体爆炸极限测试系统,并对HFC161和HC1150在-3~55,℃范围内的爆炸极限进行了试验研究.结果表明:在一定的温度范围内,温度升高会使不可燃的混合气体出现热激化现象,而成为可燃可爆状态.当环境温度由-3,℃升高到55,℃时,HFC161和HC1150的爆炸极限范围分别增加了1.42%、4.59%.低温对制冷剂爆炸极限有较明显的抑制作用;2种工质的燃爆特性的温度敏感区大约位于10~40,℃区间,当温度高于40,℃或低于10,℃时,温度对制冷剂可燃上、下限的影响均减弱.试验结果和变化规律为可燃制冷剂在变温工况下的安全应用奠定了基础.  相似文献   

14.
本文运用热力学第二定律,从单组分气体爆炸反应出发,借助于耗散结构理论,建立了熵产生与爆炸极限的关系,进一步推导出了单组分气体爆炸极限的计算公式并推广至计算多组分混合气体爆炸极限的计算公式.计算结果与实测值相近.本文旨在为瓦斯防治工作提供较全面的定量理论依据.  相似文献   

15.
为明确气体钻井过程中引发井下燃爆的原因,确定井下混合气的燃爆界限,根据现行气体钻井施工规范及现场从业经验,归纳出气体钻井施工时环空不畅或封闭、钻具与地层岩石的摩擦生热、钻头破岩产生火花是引发燃爆的原因,并结合燃烧与爆炸学理论知识从引燃方式入手,建立了以热自燃、热板点火、热球点火和火花点火为引燃能量表现形式的燃爆界限计算模型。以A井施工为例,该模型可根据钻井参数变化动态计算不同井段的燃爆界限,为及时调整钻井方案,防控井下燃爆事故提供了依托。  相似文献   

16.
本文先介绍作者新提出的超惰气浓度、可爆气体判断用爆炸三角形、同比可爆气体组合气的爆炸界限等概念及其理论计算公式,而后介绍作者新提出的采用火区超惰气浓度与同比可爆气体组合气的爆炸界限判断火区可爆性的方法。本方法与国内外已有其他方法相比,具有所用原始数据简单,程序简明,判断容易,理论完善的独特优越性。图3,表3,参考文献3。  相似文献   

17.
采用20 L球形爆炸装置,对6种不同粒径分布的微米铝粉在不同浓度下的爆炸特性进行了实验研究,考察了浓度和粒径对铝粉爆炸特性的影响规律,并分析了其爆炸产物的表面特征.结果表明,铝粉的最大爆炸压力、压力上升速率和爆炸指数随铝粉浓度的增加呈抛物线变化,在最适爆炸浓度(copt=500g/m3)时三者均达到峰值.随着铝粉粒径的减小时,最大爆炸压力、压力上升速率呈指数增加趋势,且在铝粉粒径小于10μm时,其增幅更为显著.爆炸过程中的铝粉粉尘云的燃烧时间随铝粉浓度的增大呈指数规律衰减并趋于平缓,同时随着铝粉粒径的减小而降低.   相似文献   

18.
为了满足某驾驶操作舱对爆炸冲击波的防护,设计了防爆舱结构,选用了多种防护材料,数值计算了爆炸参数和结构强度,完成了防爆舱在距离爆炸点9 m处12 kg三硝基甲苯(trinitrotoluene, TNT)裸装药的爆炸试验,重点测试了防爆驾驶舱内外的声压、内部噪声及操作人员座椅处的3个方向的振动加速度曲线。结果表明:舱内脉冲噪声峰值最大为135.1 dB;压力峰值为882.5 Pa,持续时间约为1 472 ms;座椅处3个方向的振动加速度最大为15.41g,持续时间为0.23 s;均在相关标准安全限制内,满足对等效重量为12 kg TNT及以下爆炸物在9 m处的爆炸冲击波的有效防护,验证了该防爆舱的可靠和安全。  相似文献   

19.
为合理确定爆炸事故中抛射物初速度,基于碎片穿透实验及理论分析建立了两种碎片初速度的预测方法.在理论估算中,建立了以爆炸总能量乘以能量转化效率因子确定碎片初动能的碎片初速度预测模型.在爆炸总能量的计算方法中,Baum方程可以估算压缩气体物理爆炸、化学反应失控爆炸的总能量,而在BLEVE中,用液体过热能来估算爆炸能量更为准确.以Baum,Birk等实验的转化效率为基础,根据最大熵原理得出了碎片能量转化效率因子的概率密度符合伽马分布.由实例分析可知,BLEVE中基于过热能及效率因子的初速度预测方法可以有效地进行爆炸碎片危险的定量化评价.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号