首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
LDL receptor relatives at the crossroad of endocytosis and signaling   总被引:10,自引:0,他引:10  
For many years, the low-density lipoprotein (LDL) receptor and the LDL receptor-related protein (LRP) have been considered to be prototypes of cargo receptors which deliver, via endocytosis, macromolecules into cells. However, the recent identification of additional members of this gene family and examination of their biology has revealed that at least some of these proteins are also signaling receptors. Very low density lipoprotein receptor and ApoER2 transmit the extracellular reelin signal into migrating neurons, and thus are key components of the reelin pathway which governs neuronal layering of the forebrain during embryonic brain development. LRP5 and LRP6 are integral components of the Wnt signaling pathway which is central to many processes of metazoan development, cell proliferation, and tumor formation. Adaptor proteins interacting with the cytosolic domains of these receptors might orchestrate their ability to deliver their cargo or a signal.  相似文献   

3.
Proper brain connectivity and neuronal transmission rely on the accurate assembly of neurotransmitter receptors, cell adhesion molecules and several other scaffolding and signaling proteins at synapses. Several new exciting findings point to an important role for the neuroligin family of adhesion molecules in synapse development and function. In this review, we summarize current knowledge of the structure of neuroligins and neurexins, their potential binding partners at the synapse. We also discuss their potential involvement in several aspects of synapse development, including induction, specificity and stabilization. The implication of neuroligins in cognitive disorders such as autism and mental retardation is also discussed. Received 6 February 2006; received after revision 17 March 2006; accepted 26 April 2006  相似文献   

4.
Notch cell interaction mechanism governs cell fate decisions in many different cell contexts throughout the lifetime of all Metazoan species. It links the fate of one cell to that of its neighbors through cell-to-cell contacts, and binding of Notch receptors expressed on one cell to their membrane bound ligands on an adjacent cell. Environmental cues, such as growth factors and extracellular matrix molecules, superimpose a dynamic regulation on this canonical Notch signaling pathway. In this review, we will focus on Notch signaling in the vertebrate vascular and nervous systems and examine its role in angiogenesis, neurogenesis, and neurovascular interactions. We will also highlight the molecular relationships of the Notch pathway with vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors, key regulators of both angiogenesis and neurogenesis.  相似文献   

5.
Nucleotides are of crucial importance as carriers of energy in all organisms. However, the concept that in addition to their intracellular roles, nucleotides act as extracellular ligands specifically on receptors of the plasma membrane took longer to be accepted. Purinergic signaling exerted by purines and pyrimidines, principally ATP and adenosine, occurs throughout embryologic development in a wide variety of organisms, including amphibians, birds, and mammals. Cellular signaling, mediated by ATP, is present in development at very early stages, e.g., gastrulation of Xenopus and germ layer definition of chick embryo cells. Purinergic receptor expression and functions have been studied in the development of many organs, including the heart, eye, skeletal muscle and the nervous system. In vitro studies with stem cells revealed that purinergic receptors are involved in the processes of proliferation, differentiation, and phenotype determination of differentiated cells. Thus, nucleotides are able to induce various intracellular signaling pathways via crosstalk with other bioactive molecules acting on growth factor and neurotransmitter receptors. Since normal development is disturbed by dysfunction of purinergic signaling in animal models, further studies are needed to elucidate the functions of purinoceptor subtypes in developmental processes.  相似文献   

6.
Signal transduction via the stem cell factor receptor/c-Kit   总被引:6,自引:0,他引:6  
Together with its ligand, stem cell factor, the receptor tyrosine kinase c-Kit is a key controlling receptor for a number of cell types, including hematopoietic stem cells, mast cells, melanocytes and germ cells. Gain-of-function mutations in c-Kit have been described in a number of human cancers, including testicular germinomas, acute myeloid leukemia and gastrointestinal stromal tumors.Stimulation of c-Kit by its ligand leads to dimerization of receptors, activation of its intrinsic tyrosine kinase activity and phosphorylation of key tyrosine residues within the receptor. These phosphorylated tyrosine residues serve as docking sites for a number of signal transduction molecules containing Src homology 2 domains, which will thereby be recruited to the receptor and activated many times through phosphorylation by the receptor. This review discusses our current knowledge of signal transduction molecules and signal transduction pathways activated by c-Kit and how their activation can be connected to the physiological outcome of c-Kit signaling.  相似文献   

7.
Taste perception and coding in the periphery   总被引:5,自引:0,他引:5  
Recent identification of taste receptors and their downstream signaling molecules, expressed in taste receptor cells, led to the understanding of taste coding in the periphery. Ion channels appear to mediate detection of salty and sour taste. The sensations of sweet, umami and bitter taste are initiated by the interaction of sapid molecules with the G-protein-coupled receptors T1Rs and T2Rs. Mice lacking either PLCβ2 or TRPM5 diminish behavioral and nerve responses to sweet, umami and bitter taste stimuli, suggesting that both receptor families converge on a common signaling pathway in the taste receptor cells. Nevertheless, separate populations of taste cells appear to be uniquely tuned to sweet, umami and bitter taste. Since PLCβ2-deficient mice still respond to sour and salty stimuli, sour and salty taste are perceived independent of bitter, umami and sweet taste. In this review, the recent characterization of the cellular mechanisms underlying taste reception and perception, and of taste coding in the periphery will be discussed. Received 5 March 2006; received after revision 2 May 2006; accepted 10 June 2006  相似文献   

8.
CAPA peptides have been isolated from a broad range of insect species as well as an arachnid, and can be grouped into the periviscerokinin and pyrokinin peptide families. In insects, CAPA peptides are the characteristic and most abundant neuropeptides in the abdominal neurohemal system. In many species, CAPA peptides exert potent myotropic effects on different muscles such as the heart. In others, including blood-sucking insects able to transmit serious diseases, CAPA peptides have strong diuretic or anti-diuretic effects and thus are potentially of medical importance. CAPA peptides undergo cell-type-specific sorting and packaging, and are the first insect neuropeptides shown to be differentially processed. In this review, we discuss the current knowledge on the structure, distribution, receptors and physiological actions of the CAPA peptides. Received 28 April 2006; received after revision 5 June 2006; accepted 4 July 2006  相似文献   

9.
The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy.  相似文献   

10.
Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.  相似文献   

11.
Ruminations on dietary restriction and aging   总被引:6,自引:0,他引:6  
Calorie restriction has been known for many decades to extend the life span of rodents. Since the more recent discovery that a long-term reduction in nutrient intake also extends life span in nearly every invertebrate model organism used for aging research, the mechanisms behind the longevity benefits of this intervention have been under intense scrutiny. While models have been developed in yeast, worms, and flies, the molecular mechanisms governing life span extension by calorie restriction remain controversial, resulting in great anticipation of mammalian studies testing these models. Here we discuss the links between nutrient reduction and enhanced longevity with emphasis on evolutionarily conserved nutrient response signaling. Received 1 November 2006; received after revision 15 December 2006; accepted 27 February 2007  相似文献   

12.
Cardiovascular disease is the foremost cause of morbidity and mortality in the Western world. Atherosclerosis followed by thrombosis (atherothrombosis) is the pathological process underlying most myocardial, cerebral, and peripheral vascular events. Atherothrombosis is a complex and heterogeneous inflammatory process that involves interactions between many cell types (including vascular smooth muscle cells, endothelial cells, macrophages, and platelets) and processes (including migration, proliferation, and activation). Despite a wealth of knowledge from many recent studies using knockout mouse and human genetic studies (GWAS and candidate approach) identifying genes and proteins directly involved in these processes, traditional cardiovascular risk factors (hyperlipidemia, hypertension, smoking, diabetes mellitus, sex, and age) remain the most useful predictor of disease. Eicosanoids (20 carbon polyunsaturated fatty acid derivatives of arachidonic acid and other essential fatty acids) are emerging as important regulators of cardiovascular disease processes. Drugs indirectly modulating these signals, including COX-1/COX-2 inhibitors, have proven to play major roles in the atherothrombotic process. However, the complexity of their roles and regulation by opposing eicosanoid signaling, have contributed to the lack of therapies directed at the eicosanoid receptors themselves. This is likely to change, as our understanding of the structure, signaling, and function of the eicosanoid receptors improves. Indeed, a major advance is emerging from the characterization of dysfunctional naturally occurring mutations of the eicosanoid receptors. In light of the proven and continuing importance of risk factors, we have elected to focus on the relationship between eicosanoids and cardiovascular risk factors.  相似文献   

13.
Chemokines are small, secreted proteins that bind to the chemokine receptor subfamily of class A G protein-coupled receptors. Collectively, these receptor-ligand pairs are responsible for diverse physiological responses including immune cell trafficking, development and mitogenic signaling, both in the context of homeostasis and disease. However, chemokines and their receptors are not isolated entities, but instead function in complex networks involving homo- and heterodimer formation as well as crosstalk with other signaling complexes. Here the functional consequences of chemokine receptor activity, from the perspective of both direct physical associations with other receptors and indirect crosstalk with orthogonal signaling pathways, are reviewed. Modulation of chemokine receptor activity through these mechanisms has significant implications in physiological and pathological processes, as well as drug discovery and drug efficacy. The integration of signals downstream of chemokine and other receptors will be key to understanding how cells fine-tune their response to a variety of stimuli, including therapeutics. Received 19 October 2008; received after revision 7 November 2008; accepted 11 November 2008 C. L. Salanga, M. O’Hayre: These authors contributed equally.  相似文献   

14.
The development of functional blood and lymphatic vessels requires spatio-temporal coordination of the production and release of growth factors such as vascular endothelial growth factors (VEGFs). VEGF family proteins are produced in multiple isoforms with distinct biological properties and bind to three types of VEGF receptors. A VEGF-A splice variant, VEGF-A165b, has recently been isolated from kidney epithelial cells. This variant is identical to VEGF-A165 except for the last six amino acids encoded by an alternative exon. VEGF-A165b and VEGF-A165 bind VEGF receptors 1 and 2 with similar affinity. VEGF-A165b elicits drastically reduced activity in angiogenesis assays and even counteracts signaling by VEGF-A165. VEGF-A165b weakly binds to heparan sulfate and does not interact with neuropilin-1, a coreceptor for VEGF receptor 2. To determine the molecular basis for altered signaling by VEGF-A165b we measured VEGF receptor 2 and ERK kinase activity in endothelial cells in culture. VEGF-A165 induced strong and sustained activation of VEGF receptor 2 and ERK-1 and −2, while activation by VEGF-A165b was only weak and transient. Taken together these data show that VEGF-A165b has attenuated signaling potential through VEGF receptor 2 defining this new member of the VEGF family as a partial receptor agonist. Received 31 May 2006; received after revision 26 June 2006; accepted 14 July 2006  相似文献   

15.
Infection of bacteria triggers innate immune defense reactions in Drosophila. So far, the only bacterial component known to be recognized by the insect innate immune system is peptidoglycan, one of the most abundant constituents of the bacterial cell wall. Insects use peptidoglycan recognition proteins to detect peptidoglycan and to activate innate immune responses. Such specialized peptidoglycan receptors appear to have evolved from phage enzymes that hydrolyze bacterial cell walls. They are able to bind specific peptidoglycan molecules with distinct chemical moieties and activate innate immune pathways by interacting with other signaling proteins. Recent X-ray crystallographic studies of the peptidoglycan recognition proteins LCa, and LCx bound to peptidoglycan have provided structural insights into recognition of peptidoglycan and activation of innate immunity in insects. Received 28 December 2006; received after revision 2 February 2007; accepted 21 February 2007  相似文献   

16.
Natural killer T (NKT) cells have been shown by a number of studies to play a protective role against cancers, autoimmune diseases and infectious diseases. Several glycolipids and phospholipids derived from mammalian, bacterial, protozoan and plant species have recently been identified as natural ligands (antigens) for NKT cells. Some of these glycolipid/phospholipid ligands have now been crystallized in forms bound to CD1d molecules, and the tertiary structure of these complexes has finally been revealed. This review is intended to list natural NKT cell ligands identified to date, and discuss how their structures relate to their propensity to bind CD1d molecules and, as a consequence, stimulate NKT cells. Received 14 February 2006; received after revision 31 March 2006; accepted 15 May 2006  相似文献   

17.
The modular nature of apoptotic signaling proteins   总被引:9,自引:0,他引:9  
Apoptosis, initiated by a variety of stimuli, is a physiological process that engages a well-ordered signaling cascade, eventually leading to the controlled death of the cell. The most extensively studied apoptotic stimulus is the binding of death receptors related to CD95 (Fas/Apo1) by their respective ligands. During the last years, a considerable number of proteins have been identified which act together in the receptor-proximal part of the signaling pathway. Based on localized regions of sequence similarity, it has been predicted that these proteins consist of several independently folding domains. In several cases these predictions have been confirmed by structural studies; in other cases they are at least supported by experimental data. This review focuses on the three most widespread domain families found in the apoptotic signaling proteins: the death domain, the death effector domain and the caspase recruitment domain. The recently discovered analogies between these domains, both in structure and in function, have shed some light on the overall architecture of the pathway leading from death receptor ligation to the activation of caspases and eventually to the apoptotic phenotype. Received 8 October 1998; received after revision 8 January 1999; accepted 8 January 1999  相似文献   

18.
The bone marrow microenvironment plays an important role in promoting hematopoietic progenitor cell proliferation and differentiation and the controlled egress of these developing hematopoietic cells. The establishment of long-term bone marrow cultures, which are thought to mimic hematopoiesis in vitro, and various stromal cell lines has greatly facilitated the analysis of the functions of this microenvironment. Extracellular matrix (ECM) molecules of all three categories (collagens, proteoglycans and glycoproteins) have been identified as part of this microenvironment and have been shown to be involved in, different biological functions such as cell adhesion and anti-adhesion, binding and presentation of various cytokines and regulation of cell growth. It is suggested that these matrix molecules in combination with cytokines are crucial for compartmentalization of the bone marrow. Although many cell adhesion molecules have been characterized on the surface of hematopoietic progenitor cells, the nature of cellular receptors for the ECM components is less well defined. During leukemia, many immature blood cells are released from bone marrow, but it is not yet known whether these abnormalities in hematopoiesis are also caused by an altered microenvironment or altered composition of its extracellular matrix. The elucidation of the involvement of specific ECM-isoforms and as yet not characterized ECM components and their receptors in the bone marrow will certainly help towards a better understanding of these phenomena.  相似文献   

19.
20.
Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact with the surroundings via the extracellular domain and bind to the cytoskeleton via their intracellular domain. In addition, several CAMs induce signaling events via direct interactions with intracellular proteins or via interactions with cell surface receptors. Thus, CAMs are obvious candidates for transmitting extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct interaction between NCAM and N-cadherin with a number of intracellular partners, as well as on their interaction with the fibroblast growth factor receptor (FGFR). Received 23 May 2008; received after revision 14 July 2008; accepted 21 July 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号