共查询到20条相似文献,搜索用时 125 毫秒
1.
采用传统的固相反应法和普通的烧结工艺,分别制备了(K0.48Na0.52)1-x(LiSb)xNb1-xO3(x=0.055,0.060,0.065)和x=0.055,x=0.065按摩尔比1:1复合的无铅压电陶瓷样品(55-65),并对样品的压电、介电等性能进行了测试研究.实验结果表明:55-65不等同于x=0.060的组分,其压电性能远低于x=0.060的样品,进一步研究表明,相同烧结温度下,55-65样品的损耗较高,晶粒难以生长,相对较小,较小的晶粒可能在样品形变时产生的应力较大,这可能是55-65样品压电性能较低的原因. 相似文献
2.
利用固相合成法制备了(1-x)(Na0.52K0.48)NbO3-x(Bi0.5Na0.5)0.94Ba0.06TiO3(KNN-xBNBT)无铅压电陶瓷.运用X射线衍射和扫描电子显微镜对材料的相结构和显微结构进行了分析观察,并研究了BNBT掺杂量对陶瓷压电及介电性能的影响.所有样品都显示出正交相钙钛矿结构,无杂相,平均晶粒尺寸随着BNBT掺杂量的增加先减小后变大.BNBT的掺入使样品的电学性能得到明显改善,当x为0.005时,样品的性能达到最佳:d33=123pC/N,kp=44%,tanδ=2.2%. 相似文献
3.
利用传统固熔烧结法研究了Ce掺杂的95KNN-5LiSbO3无铅压电陶瓷(简称KNN-LS)的微观结构、压电性质、老化率和防潮性能。实验结果显示,掺杂CeO2对KNN-LS陶瓷在烧结温度、质量损耗、压电性质和微观结构有特殊的影响规律,本文从微观反应机理上对其做了解释。成功制备出高压电常数(255pC/N)、高致密度(98.1%)、低老化率和高防潮性能的无铅压电陶瓷样品,表明这是一种很有应用潜力的无铅压电材料。 相似文献
4.
采用传统固相反应制备了Na0.4725K0.4725+xLi0.055Nb1+xO3无铅压电陶瓷,研究了KNbO3对Na0.4725K0.4725+xLi0.055Nb1+xO3材料晶体结构和压电性能的影响.XRD图谱表明,随着KNbO3含量的增加,在0.08〈x〈0.12处为材料的正交相和四方相共存的准同型相界.组成为Na0.4725K0.5725Li0.055Nb1.1O3的陶瓷具有优异的电学性能,d33达178pC/N,kp达0.288,εr为642,Qm为41. 相似文献
5.
KNN基无铅压电陶瓷由于具有优越的电学性能和较高的居里温度而成为最重要的无铅压电材料之一.本文主要综述近期国内外有关铌酸钾钠基无铅压电陶瓷的制备新技术,以及在掺杂改性方面的研究进展,并展望了其发展趋势. 相似文献
6.
目的制备(K0.5Na0.5)NbO3(KNN)无铅压电陶瓷并研究其结构和性能。方法采用传统固相法,用XRD,SEM等手段对KNN无铅压电陶瓷材料的相结构和显微形貌进行了表征。结果KNN压电陶瓷材料为单一的正交晶系的钙钛矿结构。对KNN无铅压电陶瓷的电性能测试表明,KNN陶瓷具有高的压电常数d33=127 pC/N,高的机电耦合系数Kp=0.41,高的温度Tc=428℃和低的介电损耗tanδ=0.028(10 kHz)的优点;KNN陶瓷存在着饱满的电滞回线,其剩余极化率Pr为18.8μC/cm2,其矫顽场Ec为9.65 kV/cm;所得的陶瓷的密度和电性能要远优于用同样制备方法和烧结方式所得的陶瓷的性能,并且也优于用等静压工艺所得的陶瓷的性能。结论KNN陶瓷是高频压电器件较理想的备选材料之一。 相似文献
7.
采用传统的固相反应法制备了(1-x)(Na0.65K0.35)0.94Li0.06NbO3-xmol%MnO2无铅压电陶瓷,研究了Mn的掺杂对陶瓷压电和介电性能的影响.实验结果表明,所有的样品都显示出四方相钙钛矿结构.材料的平均晶粒尺寸随着MnO2掺杂量的增加逐渐变大.MnO2的添加使样品的压电常数d33、平面机电耦合系数kp、机械品质因数Qm、介电损耗tanδ和相对密度均得到明显改善.当MnO2的掺杂量为0.50mol%的时候,样品的性能达到最佳:d33=144pC/N,kp=42%,tanδ=2.4%,Qm=168.以上数据表明,该陶瓷材料是一种极具应用潜力的无铅压电陶瓷材料. 相似文献
8.
采用传统陶瓷工艺制备了PNW-PMS-PZT四元系压电陶瓷,分析了其粉体的相结构组成,研究了室温下烧结温度和组分对表观密度ρ、相对介电常数εr、介电损耗tan δ,居里温度Tc和压电常数d33的影响,实验表明在室温下随着PZT含量的增加εr、Tc、d33逐渐增大,tan δ逐渐减小:随着烧结温度的提高,ρ总体增大,εr、d33增大,tan δ逐渐减少,Tc变化不明显。制得了εr=2200,tan δ=0.0062,d33=390pC/N,Tc=235℃的压电材料。 相似文献
9.
伴随着科学技术的发展和人类环保意识的增强,压电陶瓷无铅化已经成为必然趋势, 而铌酸钾钠KNN(KxNa(1-x)NbO3)基陶瓷以其优异的压电性能和较高的居里温度倍受关注.文中着重从新的组元、离子取代改性、烧结助剂和温度稳定性4个方面总结和分析了近年来KNN基无铅压电陶瓷研究状况,认为进一步提高KNN基陶瓷的电性能,解决温度稳定性问题并深入探索其微观机制应该成为未来的研究热点.提出了把弛豫机制引入KNN基陶瓷中,造成弥散相变,这样既提高了温度稳定性,又保持了较高的介电和压电性能;同时提出要探索纳米微畴对KNN基无铅压电陶瓷电性能的影响;最后对KNN基陶瓷下一阶段的工作进行了展望. 相似文献
10.
Na0.5Bi0.5TiO3-BaTiO3无铅压电陶瓷制备及性能 总被引:1,自引:0,他引:1
研究了不同烧结制度下的NBBT6陶瓷的致密度、介电和压电性能.870℃左右预烧,可以得到致密且压电和介电性能较好的陶瓷(d33=107 pC/N.∈r=750,tanδ为3.23%).通过相应的粒度分析可知,提高预烧温度对粒度的影响不太大,但可用于湿法制备工艺中的原材料制备,解决湿法工艺中材料易被极性水分子解离而影响材料组分的问题.加入少量的BaTiO3到NBT中形成NBT-BT的固溶体,通过对压电介电性能及XRD的分析可知.当质量分数x=0.06时.(1-x)Na0.5Bi0.5TiO3-xBaTiO3晶体结构出现由三方相到四方相的转变,此时的性能达到最大值(d33=114 pC/N,∈r=1 173.tanδ为3.4%). 相似文献
11.
廖运文 《西华师范大学学报(哲学社会科学版)》2009,30(2):160-164
采用传统陶瓷工艺制备了Bi0.5(Na0.90-xKxLi0.10)0.5TiO3-NaNbO3无铅压电陶瓷,利用XRD、SEM等测试技术分析表征了陶瓷的结构、表面形貌、介电、压电与铁电性能.研究结果表明,该体系陶瓷具有单相钙钛矿结构,NaNbO3的引入使Bi0.5(Na0.90-xKxLi0.10)0.5TiO3体系的相界发生了移动;随着钾含量的增加,NaNbO3对体系性能的影响越明显.在室温下,该体系表现出较好的压电与铁电性能:压电常数d33和机电耦合系数kp分别达到174pC/N和29.6%,陶瓷样品表现出明显的铁电体特征,剩余极化强度达到33.4μC/cm^2. 相似文献
12.
生物压电陶瓷复合种植材料的制备与性能研究 总被引:2,自引:1,他引:2
研究了一种新型的人工生物压电陶瓷复合种植材料-HABT生物压电陶瓷。对该种材料的压电性能、力学性能、热学性能、化学性能和生物学性能进行了初步考察和动物试验。结果表明,该材料既具有与人体组织相近的生物相容性和力学相容性,又具有相似于人体自然骨的压电性。该材料还能诱导骨组织的生长,符合生物安全性检测要求。 相似文献
13.
采用传统的陶瓷工艺制备成分处于准同型相界(MPB)内的无铅压电陶瓷0.956K0.5Na0.5NbO3-0.004BiFeO3-0.04LiSbO3(0.956KNN-0.004BF-0.04LS),研究烧结温度对陶瓷的结构与压电、介电性能和相变温度的影响.研究结果表明:所有样品均为单一的钙钛矿结构;在1100℃以下烧结的样品的相结构均呈现明显的正交相与四方相共存的特征,同时略偏向四方相区;适当的烧结温度的提高,能促进陶瓷的致密化;随着烧结温度的升高,陶瓷的压电性能先显著提高后降低,陶瓷的介电损耗先降低后提高,但对正交相与四方相转变温度(θ0-1)和居里温度(θc)的影响比较小;当烧结温度为1100℃时,陶瓷具有最好的压电与介电性能,其压电常数(d33)高达297 pC/N,机电耦合系数(kp)高达54%,居里温度为355℃,tanδ为2.6%,这表明0.956KNN-0.004BF-0.04LS无铅压电陶瓷具有广阔的应用前景. 相似文献
14.
采用传统陶瓷制备方法,制备了一种新型无铅压电陶瓷材料(1-x-y)Bi0·5Na0·5TiO3-xBi0·5K0·5TiO3-yBiCrO3(简写为BNT-BKT-BC-x/y).研究了该体系陶瓷微观结构、压电性能和退极化温度的变化规律.结果表明:除x=0·18、y=0·025的组成析出第2相外,其他组成陶瓷均能够形成纯钙钛矿固溶体,陶瓷三方、四方共存的准同型相界(MPB)成分范围为x=0·18~0·21,y=0~0·02.在准同型相界成分附近该体系陶瓷压电性能达到最大值:d33=168pC·N-1,kp=0·326.采用平面机电耦合系数kp和极化相位角θmax与温度的关系确定的退极化温度基本相同,陶瓷的退极化温度随BC含量的增加一直降低,随BKT含量的增加先降低后升高. 相似文献
15.
研究Li部分取代K对铌酸钾钠(KNN)无铅压电陶瓷性能的影响,选用(Na0.5K0.5-xLix)Nb O3(NKLxN)的配方,通过固相法制备出优良性能的陶瓷样品;运用XRD、SEM研究不同Li含量陶瓷样品的相结构及显微组织;通过压电介电性能测试,确定Li取代K的最佳含量.结果表明,当Li的含量x=0.065时,其d33=205p C/N,kp=46.1%,εr=998,tanδ=0.047,TD=485℃.该NKLxN陶瓷性能优良,在高温压电陶瓷传感器、换能器等方面可能取代铅基压电陶瓷. 相似文献
16.
采用传统陶瓷制备方法,制备无铅新压电陶瓷材料(1-x)Na1/2Bi1/2TiO3-xNa1/2Bi1/2(Sb1/2Nb1/2)O3.利用X射线衍射,精密阻抗分析仪研究Na1/2Bi1/2TiO3陶瓷B位复合离子(Sb1/2Nb1/2)4+取代对晶体结构、弥散相变与介电弛豫行为的影响,并根据宏畴-微畴转变理论探讨该体系陶瓷产生介电弛豫的机理.研究结果表明,在所研究的组成范围内,陶瓷材料均能够形成纯钙钛矿固溶体.该体系陶瓷具有2个介电反常峰tf和tm,表现出与典型弛豫铁电体明显不同的弛豫行为,掺杂量低的陶瓷仅在低温介电反常峰tf附近表现出明显的频率依赖性,而掺杂量高的陶瓷材料在室温和tf之间都表现出明显的频率依赖性. 相似文献
17.
18.
采用传统压电陶瓷工艺制备了(1-x)B i0.5(Na0.8K0.2)0.5TiO3-xNaSbO3无铅压电陶瓷,利用XRD、SEM等测试技术表征了陶瓷的晶相结构和表面形貌,利用一些电学仪器测试了其介电和压电性能.结果表明,该体系陶瓷具有单相钙钛矿结构,适量的NaSbO3掺杂可以提高该陶瓷的致密性.在室温下,当掺杂量为0.5%时,该体系表现出较好的压电性能:压电常数d33和机电耦合系数kp分别达到107pC/N和0.209;当掺杂量为0.7%时,εr和tanδ分别为1 551和0.05. 相似文献
19.
采用传统的无压固相烧结法工艺制备微量掺杂0.2%(摩尔分数)BiMnO3(BM)的0.95K0.5Na0.5NbO3(KNN)-0.05 LiSbO3(LS)陶瓷,并研究烧结保温时间对陶瓷的结构与压电、介电性能的影响规律。研究结果表明,随烧结保温时间的延长,陶瓷的压电常数d33和机电耦合系数kp先显著升高,当保温时间为7 h时,趋于稳定,介电常数εr也随保温时间的延长而升高;机械品质因数Qm和介电损耗tanδ则一直降低。在1 100℃保温烧结9 h时,陶瓷具有最好的电性能:压电常数d33=228 pC/N,机电耦合系数kp=43%,机械品质因数Qm=55,介电损耗tanδ=0.017 8;随保温时间的延长,陶瓷的相转变温度θo-t有所降低,居里温度θc则明显升高。所有陶瓷样品在35~200℃内的介电损耗tanδ均有小于0.02。 相似文献
20.
利用传统的陶瓷制备工艺制备了(1-x)(Bi0.5Na0.5)TiO3-xBaNb2O6无铅压电陶瓷,并对不同含量BaNb2O6的陶瓷的热学性质、微观结构、介电性能以及压电性能进行了研究.通过DSC测试得到陶瓷的预烧温度和烧结温度分别为850℃和1 180℃.XRD结果显示在850℃下合成的陶瓷粉料为单一的钙钛矿结构.随着BaNb2O6含量的增加,材料的弥散性相变使材料又典型铁电体向弛豫铁电体转变,这种行为是由于A离子空位所引起的.BNTBN-x陶瓷的矫顽场也随着BaNbO含量的增加而降低. 相似文献