首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以芘为荧光探针,十六烷基氯化吡啶为猝灭剂,用芘饱和水溶液配制浓度范围为0.10 ~2.40 mmol/L的系列Gemini阳离子表面活性剂溶液,用稳态荧光探针法测定了该系列表面活性剂的临界胶束浓度CMC与胶束聚集数Nm.实验结果表明:该方法测定的CMC值与电导率法测定的CMC值相当;选择猝灭剂浓度为0.20~0.50 mmol/L时,所测得的表面活性剂胶束聚集数基本不变;当表面活性剂16-X-16浓度为4~9倍CMC时,胶束聚集数随表面活性剂浓度增大而线性增大;利用外推法得到的该表面活性剂临界胶束聚集数约为亲油基同碳数的CTAB临界胶束聚集数的一半.  相似文献   

2.
以芘(Py)为荧光探针,氯化十六烷基吡啶(CPC)为猝灭剂,芘的饱和水溶液为溶剂配制的新型二聚季铵盐表面活性剂溶液,根据芘的荧光强度比(I373/I383)随表面活性剂水溶液浓度的变化而变化,用稳态荧光探针法测定了该二聚季铵盐表面活性剂的临界胶束浓度(cmc)、胶束聚集数(N).结果表明,在25 ℃时该二聚季铵盐表面活性剂的cmc为0.711 mmol·L-1,与用表面张力法测定的结果基本一致.在猝灭剂氯化十六烷基吡啶浓度为0.16~0.24 mmol·L-1(25 ℃),表面活性剂溶液浓度是其临界胶束浓  相似文献   

3.
在20~25℃范围内,以芘为探针,二甲苯酮为猝灭剂用荧光光度法测定了双子阳离子表面活性剂1,3-丙二胺N,N,-二烷基-2-羟丙基-N,N,N′,N′-四甲基二胺二氯化物(简写为GCnNCl2, n=12,14,16)的胶束聚集数N.结果表明:双子阳离子表面活性剂的胶束聚集数具有浓度依赖性,Nagg随浓度增大而线性增大.探针分子所处环境的微极性随浓度增大逐渐减弱.  相似文献   

4.
以芘为荧光探针、二苯甲酮为猝灭剂、芘的饱和水溶液为溶剂,用稳态荧光探针法测定聚氧乙烯(23)十二烷基醚(Brij35)和十二烷基硫酸钠(SDS)复配表面活性剂的临界胶束浓度(c_(cm))和胶束集聚数(N).固定复配比,实验测定各表面活性剂不同温度时的临界胶束浓度.25℃时,复配比分别为1/10、1/20和1/40的表面活性剂临界胶束浓度分别为1.005、1.316和1.567 mmol/L.当二苯甲酮的浓度在0.2~0.4 mmol/L范围时,测定不同n(Brij35)/n(SDS)比值下的胶束聚集数N.复配表面活性剂浓度为c_(cm)的2~10倍时,N随表面活性剂浓度增大而增大;用外推法分别得到n(Brij35)/n(SDS)为1/10、1/40时的临界胶束聚集数Nm分别为7.38、11.95(25℃)和10.29、19.01(35℃).  相似文献   

5.
研究了两种具有不同长度烷基链花菁的近红外探针在不同浓度表面活性剂曲通X-100溶液中的荧光行为.短链探针(图1,探针I)在水中及含有低浓度(<CMC)的曲通X 100溶液中其荧光是完全猝灭的,但当表面活性剂浓度达到CMC时,荧光迅速回升并达到最大值.长链探针(图1,探针Ⅱ)表现出类似但更加剧烈的荧光回升,该实验现象为胶束形成过程提供了一个很好的指示,也为表面活性剂临界胶束浓度的测量提供了一个简单的方法.本文对两种探针在其他表面活性剂中的荧光行为也作了调查.  相似文献   

6.
用芘荧光探针技术和表面张力研究了共聚物胶束的形成及其临界胶束浓度(CMC);利用表面张力、原子力显微镜(AFM)和园二色光谱(CD)研究了葡萄糖和氨基酸对胶束的粒径分布、形态及聚乙二醇-b-聚L-亮氨酸溶液二级结构的影响.结果表明,在一定条件下聚合物可以形成稳定的球形胶束,在水溶液中嵌段共聚物主链主要以α-螺旋构象存在;葡萄糖和氨基酸对胶束的粒径分布、形态及聚合物溶液的二级结构不产生影响.  相似文献   

7.
利用电导法分别测定了咪唑类离子液体C12mimBr、C14mimBr、C16mimBr和季铵盐类表面活性剂C16H33N (CH3)3Br-在不同的溶剂水、乙醇、乙酸中的临界胶束浓度(CMC).发现离子液体的CMC值具有一定的规律性:其CMC值随疏水基团中碳氢链的增长而减小,离子液体在不同溶剂中的电导率的变化规律,其顺序为:k(水作溶剂)>k(乙醇作溶剂)>k(乙酸作溶剂).在相同温度下,离子液体的电导率随浓度的增大而增大.在相同的测定条件下,离子液体的电导率随着其侧链基团中碳氢链的增长而减小.C12mimBr、C14mimBr、C16mimBr在不同溶剂中的CMC值顺序为:CMC(水作溶剂)>CMC(乙醇、乙酸作溶剂)  相似文献   

8.
通过酯化反应将生物素接枝于胆甾醇基普鲁兰糖链上,获得不同取代度的生物素化胆甾醇基普鲁兰糖(Bio-CHSP)衍生物.采用氢核磁(1H NMR)和X线粉末衍射法(XRD)共同验证Bio-CHSP材料的成功合成,并用1H NMR法确定Bio-CHSP的生物索取代度.Bio-CHSP改性材料具有两亲性,透射电镜(TEM)显示,可在水中自聚集成球型纳米粒.动态激光粒度分析仪(DLS)测定表明,Bio-CHSP纳米粒带负电荷且粒径随生物素取代度增大而减小.以芘为荧光探针,采用稳态荧光法测定Bio-CHSP纳米粒水溶液的临界聚集浓度(CAC),其CAC随生物素取代度的增大而减小.Bio-CHSP材料在水中表现出良好的自聚集特性,有望成为一种新型抗肿瘤药物的纳米载体.  相似文献   

9.
阴阳离子捕收剂在长石与石英表面的吸附特性   总被引:2,自引:0,他引:2  
采用单矿物浮选、ξ-电位和芘荧光探针,研究阳离子捕收剂十二胺(DDA)和阴离子捕收剂十二烷基磺酸钠(SDS)在长石和石英表面的吸附特性.单矿物浮选结果表明:pH=2.0时,相同浓度的单一或混合捕收剂溶液中长石的表面疏水性要强于石英的表面疏水性,混合捕收剂中矿物表面疏水性比单一捕收剂中的强.ζ-电位测定结果表明:在阴/阳离子单一捕收剂中长石和石英ζ-电位分别向负方向和正方向移动;阴阳离子混合捕收剂摩尔比接近1:1时,pH在2.0、2.5和9.0时长石和石英各自ζ-电位相差不大.芘荧光探针分析结果表明:pH=2.0时,捕收剂在低浓度时通过静电作用零星吸附于矿物表面,矿物表面极性与捕收剂浓度呈负相关,当矿物表面形成胶束后,单一捕收剂溶液中矿物表面极性有所增强,而混合捕收剂溶液中矿物表面极性继续降低;在相同条件下的混合捕收剂溶液中矿物表面的疏水性比单一捕收剂强,且在矿物表面形成胶束浓度要比单一捕收剂低;整体而言,相同浓度条件下单一和混合捕收剂溶液中长石表面疏水性比石英的强.  相似文献   

10.
采用阳离子型芘荧光探针芘甲胺基盐酸盐跟踪聚N-异丙基丙烯酰胺(PNIPAm)/锂藻土Laponite原位聚合制备纳米复合水凝胶的过程.首先通过提高Laponite分散液的离子强度,采用离心分离和紫外-可见光吸收光谱验证了荧光探针在Laponite片层上的吸附;然后通过跟踪吸附荧光探针的激基缔合物的荧光光谱,发现反应液在聚合反应开始20min后出现的乳白色不透明现象与体系中形成的PNIPAm链的不均匀分布相关.聚合生成的高分子链吸附在Laponite片层周围,占据了片层上一定的空间,使得吸附在Laponite片层上的荧光分子被挤压而靠近,造成荧光激基缔合物的出现,因此可以通过荧光光谱变化来推测纳米复合(NC)凝胶聚合过程中透光率的变化及生成的聚合物链与交联剂Laponite之间的相互作用,这为深入认识NC凝胶的交联结构提供了一种实验方法.  相似文献   

11.
在25,35和45℃测定了离子液体([C4mim]Br,[C6mim]Br,[C8mim]Br)对蛋白质(BSA、溶菌酶)的荧光猝灭光谱,分析了离子液体与蛋白质相互作用的荧光猝灭规律,计算了荧光猝灭过程的猝灭常数和热力学参数.结果表明:离子液体可以有规律地使蛋白质的荧光猝灭,猝灭是由离子液体与蛋白质的碰撞引起的,是一个动态猝灭过程.该过程的猝灭常数很小,说明离子液体与蛋白质之间的相互作用较弱.热力学研究表明,猝灭过程是一个熵驱动过程,疏水相互作用是其主要特征.  相似文献   

12.
合成了基于胆碱骨架的几种离子液体[N1,1,nC2OH]Tf2N(n=4,6,8,10),并对其进行了表征.研究了非那西汀、布洛芬和吲哚美辛在纯离子液体中的溶解性能,之后用这些离子液体作萃取剂,讨论了药物分子在离子液体-水两相中的分配规律,结果表明几种药物分子可以有效地被离子液体所萃取,而且随着离子液体烷基链的增加其萃取效率逐渐增大.  相似文献   

13.
近年来,离子液体是全新的绿色溶剂体系被称为"未来的绿色设计者溶剂"。离子液体以其独特的物理化学性质和在众多领域的巨大应用潜力而引起广泛的关注。离子液体在分离过程中的实际应用还存在一些需要解决的问题,如相平衡等热力学数据缺乏。叙述了近年来离子液体的相平衡,总结了这些混合物相行为的基本热力学规律以及对萃取分离过程的指导作用。结合研究工作,概述了相平衡与离子液体的关系,意在为离子液体的应用提供信息和数据。同时,对离子液体的发展进行了展望。  相似文献   

14.
离子液体的毒性及其潜在风险评估   总被引:4,自引:0,他引:4  
组成离子液体的结构和纯度对其毒性有较大的影响.综述离子液体的纯度,阳离子、阴离子组成对其毒性的影响以及离子液体的生态学设计方案和多维风险分析的研究进展.  相似文献   

15.
以硅胶为载体,γ-氯丙基三乙氧基硅烷(NQ-53)为偶联剂,哌啶和1,4-丁烷磺内酯为反应性功能基,p-CH3PhSO3H,CF3COOH,H2SO4和HBF4为质子酸,设计合成了4种新型硅胶固定化季铵SO3H型酸性离子液体.分别经红外光谱、元素分析和TG分析测定了离子液体的功能基结构和稳定性,并用紫外光谱法测定了其Hamm ett酸度.初步探讨了H+促进下4种离子液体对合成乙酸异戊酯的催化性能.结果表明,酸性离子液体的Hamm ett酸度函数H0在0.67—0.82,酯化反应体系中若有少量无机酸的参与,可有效地提高乙酸异戊酯的收率,反应体系中加入1.0 g离子液体和1.0 mL浓盐酸,乙酸异戊酯的收率为67.7%,比采用盐酸或离子液体单组分催化时酯的产率提高了20%—40%.该合成方法操作简单,产物与离子液体容易分离,离子液体可重复利用.  相似文献   

16.
综述咪唑鎓盐、季铵盐和吡啶鎓盐等含氮手性离子液体的合成及其在不对称催化反应中的应用研究进展.研究成果表明,手性离子液体的制备既可以直接使用手性源(如氨基酸、氨基醇、或生物碱等),也可以利用不对称合成.含氮手性离子液体手性中心的构建、固载化方法以及构效关系将是今后研究工作的重点.  相似文献   

17.
离子液体具有高热稳定性、不挥发和良好的溶解性,常作为绿色溶剂和催化剂使用.近年来,离子液体在聚合物阻燃中的应用呈增长趋势.综述了离子液体在聚合物中的阻燃应用研究与进展,重点阐述了离子液体阻燃的主要种类与合成、阻燃机理、作用方式以及在不同聚合物中的阻燃应用.离子液体催化成炭以及多元素协效的阻燃机理普遍被人们接受.就离子液...  相似文献   

18.
Two series of room temperature ionic liquids, 1-alkyl-3-methylimidazolium tetrafluoroborate and 1-alkyl- 3-methylimidazolium bis(trifluoromethylsulfonyl)imide (n = 2--4) as electrolytes were prepared and fundamental electrochemical properties of the neat ionic liquids and those mixed with an organic solvent (EC-DMC-DEC, 1 : 1 : 1, mass ratio) were investigated. It was found that the Arrhenius equation is approximately fit for the relationship between conductivity and temperature for neat ionic liquids within lower temperature range (298--323 K). The VTF interpretation describes the conductivity temperature dependence for the ionic liquids containing tetrafluoroborate anion more accurately than those containing bis(trifluoromethylsulfonyl)imide anion within wider temperature range. The potential windows are approximately 4.0 V for all these ionic liquids. Conductivities of the mixed electrolytes show a maximum value as the solution concentrations increase.  相似文献   

19.
氨基功能化离子液体表征及吸收SO2的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
制备了4种氨基功能化离子液体,通过UV,IR和NMR进行了结构表征.进行了室温下吸收SO2的实验,结果表明,该类离子液体的吸收平衡时间为1.5 h,最大摩尔分数溶解度为2.50,质量分数溶解度为52.5%.吸收了SO2的离子液体经过简单蒸馏即可回收使用,脱附率为96%.与目前报道的离子液体脱硫技术相比,氨基功能化离子液...  相似文献   

20.
将PRSV状态方程应用到CO2气体在离子液体中的溶解度计算,并根据离子液体在不同温度下的密度数据,得到了PRSV状态方程用于离子液体时的方程参数,分别用与G^E模型NRTL相结合的Wong-Sandler和van der Waals混合规则来关联计算CO2气体在离子液体中的溶解度,并优化得到气体与离子液体的交互作用参数。其计算结果的平均相对误差分别为9.45%和6.60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号