首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
研究了不同冷轧压下率对铸轧法制备的Cu/Al复合板材界面微观组织和力学性能的影响。研究结果表明:冷轧过程中压下率过大时界面层会发生断裂而破碎,进而影响复合材料性能。冷轧压下率从29%逐渐增加到57%时,界面层的破碎程度逐渐加重,复合板抗拉强度逐渐增大,延伸率则随之下降,同时剥离强度先迅速减弱后缓慢增强。当冷轧压下率达到57%时,界面扩散层被严重破坏,形成大量纯铜和纯铝直接接触、无明显扩散的结合界面,铜铝复合板主要靠机械咬合力结合。  相似文献   

2.
采用铸轧法制备钛铝复合板并对其进行冷轧处理,使用万能试验机对不同变形量的复合板进行力学性能检测,用显微硬度计测量界面层附近的显微硬度,通过光学显微镜及扫描电子显微镜观察其界面结合情况、微观组织及拉伸断口形貌。研究结果表明:随着压下率的增加,界面层两侧的硬度逐渐增大。当压下率为23%时,复合板的抗拉强度从铸轧态的172 MPa增加到215 MPa,延伸率从34%下降到16%,界面层仅有少量裂纹。随着压下率的增加,抗拉强度缓慢增加,界面处裂纹的长度和宽度迅速增加,界面层迅速减薄。当压下率达到53%时,界面层破损严重,钛铝两种金属的主要结合方式由冶金结合变为机械啮合。  相似文献   

3.
采用非真空热轧方法制备304不锈钢/Q235碳钢复合板材,利用OM、SEM、EDS等研究了不同压下率和轧后冷却方式下复合界面夹杂物、界面组织及力学行为的演变,并分析了C扩散对复合板界面组织形成及结合强度的影响。结果表明,随着轧制压下率的增加,界面夹杂物由块状向线型、连续点状乃至弥散点状分布变化。当压下率较低(28%)时,复合板剪切断裂位于结合界面处,随着压下率增加至47%及以上,复合板断裂位置为脱碳铁素体区。另外,热轧复合板经水冷工艺处理后,由于冷却速率较快,要抑制碳钢侧C元素的扩散,避免复合界面处脱碳区域的形成,从而提高了复合界面的结合强度。  相似文献   

4.
研究了轧制处理后-铝固液相浸镀复合板的界面剪切力学性能,确定了压下率与界面剪切强度之间的关系,结果表明,压下率为2.73%时,可消除由1.2mm厚08Al钢板和1.0mm厚工业纯铝构成的2.2mm厚钢-铝固液相浸镀复合板的界面附加应力,从而获得阳大界面剪切强度为83.5MPa。  相似文献   

5.
采用异步轧制方法制备铜/铝复合板,用电子万能试样机、扫描电子显微镜(SEM)及能谱仪(EDS)等分析测试手段,研究扩散退火对于铜/铝复合板结合强度、剥离裂纹位置及剥离断口化学成分的影响.研究发现,扩散退火使复合板结合强度降低,扩散层厚度随退火温度的提高而增大.复合板经350℃保温2h后,在铜/铝界面形成厚7.31μm的扩散层,经500℃保温2h后,形成厚15.53μm扩散层.退火态铜/铝复合板剥离裂纹位于靠近扩散层中间的富铝层,剥离断裂处的金属间化合物为CuAl和CuAl2.退火时形成的脆性金属间化合物以及轧制过程中形成的裂纹及未结合区是造成结合强度降低的主要原因.铜/铝轧制复合板宜采用低于350℃温度进行退火.  相似文献   

6.
首道次轧制对复合钢板组织和性能的影响   总被引:1,自引:0,他引:1  
利用真空轧制复合法在不同的首道次轧制压下率下对成分、状态、尺寸等相同的钢板进行了热轧复合,研究了5%,10%,15%三组不同首道次压下率真空轧制复合板的界面组织及Z向力学性能,分析了首道次压下率对复合性能的影响.实验结果表明:随着首道次压下率的增大,界面生成物尺寸逐渐变小,数量减少,形态由长条状逐渐过渡为弥散分布的细小颗粒状;在首道次压下率为15%时,复合板界面已非常洁净;复合板Z向抗拉强度、延伸率、断面收缩率及塑性都随首道次轧制压下率的增大而逐渐改善.  相似文献   

7.
采用爆炸焊接工艺对TC1钛板及6061铝板进行爆炸复合,在TC1钛板与6061铝板之间放置1060铝板作为过渡层。对制备的钛/铝复合板进行金相试验(OM试验)、扫描电镜试验(SEM试验)、能谱分析试验(EDS试验)、X射线衍射试验(XRD试验)等界面表征试验和显微硬度测试,探究钛/铝爆炸复合板结合界面的微观特征及硬度分布。研究表明:沿着爆炸复合方向,钛/铝爆炸复合板结合质量良好,钛/铝爆炸复合板结合界面以直线结合为主,在部分区域存在波形,部分波形界面附近存在“全岛”组织;结合界面出现元素扩散现象,具有扩散焊的特征,未出现金属间化合物;由于金属塑性变形的影响,结合界面的硬度值增高,产生变形强化的现象。通过分析钛/铝爆炸复合板结合界面的微观特征及形成的机理,钛/铝爆炸复合板结合界面具有压力焊、熔化焊、扩散焊的特征。  相似文献   

8.
铝/铜复合界面金属间化合物   总被引:1,自引:0,他引:1  
冷轧复合板轧制后要进行一定的热处理以加强界面的结合强度,但同时也带来一定的问题如在界面形成不利于界面结合的化合物,本文对冷轧制备的铝/铜层状双金属片进行了研究,得到了不同退火温度和退火时间下扩散热处理后界面金属间化合物相的生长规律,初步建立了金属间化合物形成的动力学模型.  相似文献   

9.
采用AZ31镁合金和纯铝进行高温复合轧制制备镁-铝复合板,使其兼具铝的表面耐蚀性和镁合金的高比强度特性.采用金相显微镜、扫描电子显微镜和电子万能拉伸机等设备,研究了不同热轧温度及退火工艺参数对铝-镁复合界面的显微组织和结合强度的影响.结果表明:300 ℃轧制,镁-铝复合板出现严重边裂;450 ℃轧制,边裂消失;在轧制温度为400 ℃、压下率为50%、300 ℃退火2 h的条件下得到的复合板界面结合强度最大,为7.5 MPa.  相似文献   

10.
应用ANSYS有限元软件分析了热轧复合的不锈铜复合板在冷轧过程中的变形特性,界面结合强度的分析给定以及确定成卷可逆带张力冷轧时的最大道次压下量值。  相似文献   

11.
为了提高钛-钢复合板界面结合强度,本文提出在钛-钢之间加入Ni箔作为过渡层,采用真空轧制方法制备TA1-Ni-Q235复合板,研究了Ni中间层厚度及轧制温度对复合板组织及结合强度的影响。实验结果表明,Ni中间层可有效阻止Ti-Fe和TiC化合物生成,随着Ni中间层厚度增加,阻止C元素扩散作用加强,界面结合强度提高;随着轧制压下率的增加,界面结合强度提高;随着轧制温度的提高,界面化合物层厚度增加,界面结合强度下降,其中,Ti-Ni界面处形成Ti2Ni和TiNi化合物。  相似文献   

12.
异步轧制铜/铝双金属复合板变形行为的研究   总被引:2,自引:0,他引:2  
采用异步轧制复合工艺制备了铜/铝双金属复合板,分析了轧制工艺参数对复合板变形行为的影响,结合轧制变形区金属受力状态探讨了复合过程中的金属变形及流动规律.结果表明:异步轧制变形区内界面摩擦剪切作用直接影响母材的受力状态,共同变形区内双金属间的搓轧作用对金属流动及结合效果影响最大.异步速比越大,硬质金属变形越大.总压下率增大时,组元金属压下率均呈正比关系增加,且软、硬两种金属的压下率差值越来越小.  相似文献   

13.
有助复剂温轧不锈钢复铝板实验研究   总被引:8,自引:2,他引:8  
实验研究了浸涂助复剂和中温轧制工艺对不锈钢和铝固相复合界面结合强度及复合板深加工性能的影响·结果表明,原料表面浸涂助复剂不仅可以有效清除不锈钢和铝表面的氧化层,同时反应生成的覆盖膜在加热时又可防止和减少材料表面的再氧化和二次污染,有利于提高界面的结合强度;采用中温轧制工艺不仅在小变形的条件下即可实现不锈钢和铝复合界面的良好结合,而且能明显降低复合过程中不锈钢的变形率分配,有利于改善复合板的深加工性能  相似文献   

14.
对四层对称轧制复合时的压下率变化规律进行了研究,发现四层对称轧制复合时,同一次复合的两块复合板的压下率并不完全相等(ε1≠ε2),四层复合的总压下率εΣ介于两块复合板的压下率ε1与ε2之间,并且总压下率εΣ等于两块复合板的平均压下率。  相似文献   

15.
热轧双金属复合板由于其优良性质而得到广泛使用,而如何改善其结合性能也成为业界内的研究热点问题.本文尝试采用分子动力学模拟的方法对316L/Q345R双金属板的高温结合性能进行系统研究.在建立316L/Q345R体系的原子结构模型的基础上,使用MID模拟方法对316L/Q345R体系的热压复合过程进行模拟,其中采用嵌入原子势函数来描述Fe、Cr和Ni之间的相互作用.分析了不同温度与压缩应变率对热压复合变形机制以及扩散层厚度的影响,并探讨了添加金属层对界面结合性能的改善效果.研究表明:温度的提高有利于形成较厚的扩散层,当双金属热压复合温度接近熔点时,此时在双金属复合界面获得的扩散层厚度远大于在较低温度复合时的扩散层厚度;应变率的提高会降低扩散层厚度,这主要因为在达到相同的压缩应变时,随着应变率增大和压缩时间缩短,原子的扩散时间缩短;在双金属之间添加一个晶格厚度的Ni层后,复合界面扩散层厚度比不含Ni复合时增加了134.5%,表明添加镍层能够明显提高扩散层厚度,但添加铬层对提高扩散层厚度的影响不大.  相似文献   

16.
采用累积叠轧(ARB)结合多次退火处理制备了Al/Cu复合板,重点研究了Al/Cu界面反应层核-壳结构形成机制. 结果表明:Al/Cu界面反应层的形成主要依赖于退火过程中铜原子在界面处的扩散,反应产物包括Al2Cu、AlCu、Al4Cu9. 轧制变形致使反应层破碎并在基体中均匀分布,轧后退火处理导致新的反应层不断形成.最终经多次叠轧及退火处理,原始铜板材全部转变为椭球状具有核-壳结构的Al/Cu金属间化合物颗粒. 8道次复合板抗拉强度最高,达到176.8 MPa,是退火态1060抗拉强度的1.74倍;0道次复合板延伸率较好,主要是Al/Cu界面分层后铝层均匀塑性变形,应力缓慢释放所致.  相似文献   

17.
采用铸轧法制备了不同厚度的铜-铝-铜复合板,并分别采用拉伸试验、剥离试验、X射线衍射仪、能谱点分析(EDS)、扫描电镜(SEM)和能谱线扫描分析(EPMA)等对复合板力学性能、形貌和组成进行了检测。检测结果表明:界面层的主要组成物为α(Al)、Cu Al2、Cu9Al4。板厚从6 mm增大到14 mm时,界面层厚度和Cu、Al原子扩散程度均逐渐增加。抗拉强度从115 MPa增大到135 MPa,延伸率从25%增加至31%,剥离强度从30 N/mm增大至35 N/mm,剥离强度即为界面层结合强度。  相似文献   

18.
冷轧复合对铝合金复合箔组织与性能的影响   总被引:1,自引:0,他引:1  
研究了在冷轧复合法生产汽车散热器用铝合金复合箔的工艺中,冷轧首道次压下率、包覆层厚度及成品前退火制度对复合箔组织与性能的影响.结果表明:皮材A4045和芯材A3003在30%~50%的首道次压下率下可以实现良好的初结合,冷轧工艺生产的复合箔上、下包覆层的厚度基本一致.最后一道次的精轧压下率在25%~35%之间时,复合箔成品的抗下垂性能最佳.复合箔成品前的退火温度应控制在320~400℃,退火温度为400℃时,退火时间以不超过80 min为宜.  相似文献   

19.
结合电火花毛化轧辊磨损形貌以及轧制界面油膜厚度的分布,建立真实表面接触的带钢表面粗糙度生成模型,研究轧辊全服役期内冷轧界面粗糙度的转印过程,并使用生产数据对模型进行验证。利用所建立的带钢表面粗糙度生成模型,确定不同磨损情况下油膜厚度与粗糙度Ra复印率的拟合关系,以此分析来料厚度、带钢屈服强度、压下率以及轧制速度对成品带钢表面粗糙度的影响。建立以调整成品机架压下率与轧制速度的冷轧带钢表面粗糙度控制策略。研究结果表明:压下率和轧制速度对表面粗糙度的转印行为有明显影响,能够成为调节带钢表面粗糙度复印率的主要手段。  相似文献   

20.
将一种按正交法编织的铜网格作为增强体引入到铝基体中制备了Al/Cu复合材料,再借助原位拉伸扫描电镜(SEM),观察了铝铜复合材料的组织演变,研究了其断裂机理与力学性能之间的关系.结果表明:在相同轧制变形量下,25 ℃冷轧和400 ℃热轧均可破碎增强体铜网格,并使其均匀分布于基体铝板.复合板原位拉伸下的载荷-位移曲线均表现出明显的弹性阶段、塑性阶段和失效阶段,微裂纹在Cu颗粒周围和应力集中处萌生,主裂纹及其扩展主要是Cu颗粒周围界面分层开裂与微裂纹沿滑移线方向的扩展共同作用下形成的,并且最终沿滑移线的断裂路径与单轴拉伸方向呈45°.发生在Al层的塑性断裂和Al/Cu结合界面上的界面分层断裂是Al/Cu复合板两种主要的失效方式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号