首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
一种基于聚类的粗糙集连续属性的离散化算法   总被引:4,自引:0,他引:4  
粗糙集理论是一种新的处理不精确、不完全与不相容知识的数学工具。粗糙集理论只能对离散属性进行处理,而不能处理连续属性。中针对这一缺陷,利用连续数值属性有序性的性质和统计方差理论,提出了一种基于聚类的连续属性离散化算法。运用典型数据将本算法与现有方法进行了比较分析,得到了满意的结果。  相似文献   

3.
基于启发式信息熵的粗集数值属性离散化算法   总被引:1,自引:0,他引:1  
在一致性假设前提下,以数据集的统计性质作为启发式知识,从候选离散点集中选择离散点,根据数据集的期望值和方差来确定搜索最优离散点的区域,提出一种新的基于信息熵粗集数值属性离散化算法,并采用UCI国际标准数据集来验证新算法.新算法与已报道的算法所得到的离散断点集完全一致,决策表的离散化结果也相同,但时间代价不同,新算法比其计算效率提高40%~50%.  相似文献   

4.
离散化是Rough集理论研究的一个重要内容,目前基于Rough集的离散化算法很难做到高效率和高识别率兼顾.文中分析了基于断点重要性算法和基于属性重要性算法的特点,确定了离散化思路,提出了一种基于Rough集的集成离散化算法.该算法能够有效降低候选断点的数目,快速地实现决策表的离散化.实验结果表明,文中算法保持了与已有算法可比的识别率,且运行效率更高.  相似文献   

5.
知识发现过程中连续属性离散化方法研究   总被引:8,自引:0,他引:8  
在综合分析知识发现过程中连续属性离散化方法的基础上,提出了一种基于全局聚类分析来处理连续属性离散化问题的方法。实例验证结果表明该方法对知识发现过程中连续属性离散化的划分更为合理。  相似文献   

6.
为提高大数据粗糙集挖掘能力,提出基于信息熵的粗糙集连续属性离散检验算法﹒在云计算环境下进行粗糙集连续属性大数据挖掘,采用特征空间重组方法进行粗糙集连续属性离散数据的模糊特征重构,提取粗糙集连续属性离散数据的信息熵,并得到其分布序列特征;对所提取的信息熵进行聚类分析,采用空间决策树模型,获取离散数据闭繁项关联分析度量;通过数据特征权重的决策树分布特征量化集,得到粗糙集连续属性离散数据空间重组;采用大数据挖掘方法,将离散数据空间重组的信息融合,得到优化的粗糙集和连续属性离散数据检验输出;根据粗糙集连续属性的融合结果,实现离散检验优化﹒仿真结果表明:在迭代次数为400时,收敛程度为0.265%,远远高于其它方法,证明采用该方法进行粗糙集连续属性离散检验的数据聚类性较好﹒  相似文献   

7.
李刚  段隆振  孙焱平 《江西科学》2009,27(2):251-254
提出了一种基于多连续属性的离散化改进算法,在信息增益的离散化算法基础上,将离散化结果加以修正,并结合实例,详细说明该改进算法能更准确的判断出噪声数据、异常数据和错误数据,实现对这些数据的区别对待。  相似文献   

8.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对该算法的性能进行了检验,并与其它算法做了对比实验实验结果表明该算法是有效的,而且当候选断点个数增多时仍具有较高的计算效率.  相似文献   

9.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验.实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率.  相似文献   

10.
文中给出了基于属性值出现的频率的连续属性离散化的一种方法。在离散化问题描述的基础上,利用属性值出现的频率确定频数候选断点,再利用边缘断点算法进一步减少断点数目,达到离散化目的。该方法提高了决策属性关于条件属性的支持度,提高了属性约简的满意度。  相似文献   

11.
针对在数据挖掘中,连续属性常常需要预处理问题,应用粗糙集理论对连续属性的不完备问题、离散问题进行了研究,提出了一种连续属性预处理方法。基于条件属性与决策属性间的对应关系完成了不完备数据的填补。依据划分区间的概念、连续属性离散化含义及其本质特征,定义了划分区间的加法运算法则,以此对填补后的信息表进行了划分区间运算,并以分类质量作为离散过程迭代约束条件,实现了信息表中连续属性的离散化。通过C 编写的算法进行数值示例及测试数据库。实验结果表明此算法有效可行。  相似文献   

12.
目前常用的离散算法多为单属性离散化算法.利用该类算法对多维连续属性进行离散化时,逐次对单个属性进行离散化,割裂了多维属性之间的关系.基于此提出了一种基于遗传算法和变精度粗糙集的多属性离散化算法.该算法基于变精度粗糙集所具有的较好数据分类容错和抗噪能力,通过变精度粗糙集近似分类精度建立遗传算法适宜度评价函数,并利用遗传算法在多维连续属性候选断点集上寻找最优断点子集.基于UCI数据集比较了所提算法与多种常用的离散化算法的差异,实验结果表明,该算法可以获得相对较好的离散化效果.  相似文献   

13.
提出了基于断点辨别力的粗糙集离散化算法。通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化。离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息。采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验。实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率。  相似文献   

14.
考虑到不同属性之间的重要性,利用粗糙集理论对模糊信息表或信息表中的不同属性之间(特别是定量属性与定性属性之间)进行耦合,提出一种计算不同属性间相似度的计算方法,即基于粗糙集属性重要性的模糊聚类方法,解决模糊信息表或信息表中属性值定量与定性描述并存情况下的聚类问题,并根据原类结果建立决策表.  相似文献   

15.
基于Rough Set和灰色关联度的煤炭企业评价方法   总被引:2,自引:0,他引:2  
针对企业评价中已有评价方法权数分配不合理、指标权数测定困难、难以对企业进行有效的综合评价的现状,采用粗糙集理论和加权灰色关联度的方法测定指标权数,对煤炭企业进行综合评价.以2006年煤炭行业上市公司的财务报表数据为实例进行实证分析,结果表明:基于粗糙集和灰色关联度的企业综合评价方法能够克服传统评价指标权数确定的主观偏好,是一种可行的评价方法.  相似文献   

16.
针对病理诊断规则获取问题,采用基于粗糙集理论的规则提取方法.首先进行连续属性的离散化,用遗传算法对CAIM(class-attribute interdependence maximum)离散化算法进行改进.然后利用粗糙集理论进行规则提取.采用以核为基础的增量式约简算法,综合考虑属性对约简的增益和属性在剩余属性集中的重要性,给出了衡量属性重要性程度的一个准则.随后进行属性值约简,获取诊断规则.  相似文献   

17.
讨论模糊C均值聚类算法在决策表条件属性对决策属性的相容程度的指导下对粗集理论中的连续属性进行离散化的一种新算法。该算法充分考虑属性之间的相关性,将所有连续属性转化为矩阵同时处理,能明显提高传统动态层次聚类算法离散化过程的速度。算法测试结果表明,新算法能较好地保留有效属性,提高离散化精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号