首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用基于CFD理论的Airpak软件对自然通风(正弦周期性波动的风速)条件下的热舒适性进行模拟分析,通过预测平均热感觉(PMV)指标和不满意率(PD)指标对热舒适性进行评价,比较人体对低频(0.3、 0.4、0.5 Hz)变化风速的满意度.结果表明,在室内温度、相对湿度等条件不变时,PMV值与风速呈现出相同的变化规律,人体对变化频率为0.3 Hz的风速最满意.  相似文献   

2.
从室内空气环境的影响因素出发,结合一些主要的热舒适性指标,分析了影响热舒适的因素,指出了在暖通空调设计时必须从人体的热舒适角度考虑其设计方案.  相似文献   

3.
室内热环境对人体热舒适的影响   总被引:7,自引:0,他引:7  
从生理心理学角度分析室内热环境参数;再从热平衡的角度引入人体热舒适的概念,并提出改善室内热环境、提高人体热舒适的措施.通过分析室内热环境对人体热舒适的影响和理论研究中存在的问题和不足,指出一些建议.  相似文献   

4.
空气流速对人体热舒适影响的研究   总被引:8,自引:0,他引:8  
在温湿度较高的场合,通过加强室内空气流动保证热舒适是最简单的节能途径.通过在实验室内由不同温湿度与空气流速组合的环境下进行热舒适实验来确定在热湿环境下空气流动对受试者热舒适性的影响程度.统计分析表明:稳定条件下中性温度的了TSE是26.3℃,热舒适温度了TSE是25.6℃,可接受的空气流速上限为0.8m/s,得出了TSE与热感觉的线性拟合方程式.  相似文献   

5.
以P.O.Fanger热舒适方程为理论依据,提出采用空气全热回收装置处理新风的空气处理方式,实现对室内相对湿度的控制以改善室内热舒适性。结果表明,在相对湿度为30%~70%的范围内,用空气全热回收装置预处理新风能降低室内相对湿度,使人体的热舒适指标PPD值随着相对湿度的降低而降低;并且,提高热回收效率能进一步降低PPD值,使热舒适性得到进一步改善。  相似文献   

6.
室内人体移动过程对热舒适的影响研究   总被引:1,自引:0,他引:1  
使用计算流体力学(CFD)技术,结合动网格技术和刚体运动学理论,对室内人体移动进行了动态模拟,得到了人体移动过程中不同时刻室内流场分布.分析了移动过程中的平均温度、平均速度、温度和速度不均匀性指标,并预测了有效吹风温度(TEDT)、空气分布特性指标(ADPI)和吹风感的不满意率指标(PD),比较了不同人体移动速度对以上指标的影响.模拟结果表明,人体移动对室内气流分布和热舒适有短期影响,能提高室内风速的扰动,造成吹风感.  相似文献   

7.
研究显示,环境温度的变化对人体心脏活动的影响显著,寒冷或极端温度会给人们带来心血管疾病。本文基于人体心率变异性指标,探讨了温度漂移热环境在室内热舒适方面的优势,并分析了人体主观热评价、皮肤温度与心率变异性之间的关系。本文设置16名受试者从初始稳定温度(24℃或18℃)经历半小时的温降漂移,最后再经历升温回到初始温度。实验收集了受试者的主观热评价与皮肤温度,并全程监测了其心电信号。通过频域分析法,得到了心率变异性的低频功率/高频功率比值(LF/HF)。结果表明:在冬季,适当的温度漂移可以改善受试者对相同温度热环境的热舒适评价;温度漂移对人体热舒适的影响可以通过LF/HF值表征出来;冬季温度漂移热环境下,人体的LF/HF值与平均皮肤温度、热感觉显著相关。  相似文献   

8.
环境风速和温度的热舒适组合模型   总被引:5,自引:0,他引:5  
在合理假定的前提下,从人体与热环境的基础理论出发,着重对影响人体与环境之间的对流换热的主要因素,即温度和气流速度在热舒适条件下二者的最佳组合关系进行了理论研究,并在实验研究的基础上对理论模型进行了校核,证明了该模型的可信度.  相似文献   

9.
基于自行研制的人体脚部热湿舒适性测试仪器,测试分析了人体在静止、运动条件下的鞋内脚的各部位相对湿度和温度以及其变化规律,并对穿着不同材料的袜子对鞋内脚部热湿舒适性的影响进行了对比研究。研究结果表明,所研制的测试装置能够满足人体脚部热湿舒适性的测试评价;人体在穿着鞋袜后,无论是休息静止还是运动,鞋内脚部的相对湿度和温度均会按指数规律发生变化,而且鞋内脚部的热湿舒适性受袜子原材料的影响。  相似文献   

10.
太阳辐射对轿车乘员舱热舒适性有较大影响,在设计空调系统制冷时,应该以太阳辐射对乘员产生最大热量时的工况为依据,而在传统设计中往往采用90°太阳高度角时的辐射工况.文章通过采用RNGk-ε湍流方程和Discrete Ordinates辐射模型,结合人体各个部位的热评价机制,对某款轿车的乘员热舒适性进行了多工况数值模拟和分...  相似文献   

11.
室内热舒适性的评价方法   总被引:5,自引:0,他引:5  
室内热舒适性是空调设计成功与否的一项重要指标,针对几种不同的建筑微气候指标组合,讨论了有关人体热感觉的评价方法和可供工程应用的热舒适图。  相似文献   

12.
通过对20名受试者在不同空调形式(对流空调、辐射地板空调、辐射吊顶空调等)及个人舒适系统(Personal Comfort System)多工况下生理参数和主观反应的实验研究,得到冬季辐射和对流换热形成的非均匀环境对人体热舒适的影响,同时建立了不同工况下考虑局部影响权重的人体热感觉评价模型。结果表明:①不同空调形式下局部热感觉对整体热感觉影响权重不同;②三种空调形式下不使用PCS时远窗侧人员最冷部位(足部)热感觉投票值均高于近窗侧,全体人员足部热感觉投票值在辐射地板空调中最高。使用PCS可提升局部热感觉和热舒适,局部热感觉提升最显著部位分别是肩胛部(对流)、腹部(辐射地板)和大腿(辐射吊顶);③此外,PCS可以降低人员期望温度(Preferred Temperature,PT),在辐射地板组合PCS时期望温度变化最大。  相似文献   

13.
人体热舒适客观评价指标   总被引:4,自引:1,他引:4  
在人体、动物实验基础上,对有可能作为人体热舒适客观评价指标的重要生理参数进行探讨.人体热反应实验在人工气候室内进行,对不同环境温度下受试者的生理参数和主观感觉同时进行测量.研究结果表明:受自主性体温调节活动影响的生理参数如人体皮肤温度、心率变异性、新陈代谢率、脑电波、肌电、排汗率与人体热舒适具有较好的生理相关性,并且在人体处于热舒适与不舒适状态时差异显著,具备作为人体热舒适客观评价指标的生理基础;平均皮肤温度反映热舒适程度的灵敏性较高,具备较高的可靠性,而且其测量与计算较为简单,可作为一个有效的客观指标来评价稳态热环境下的人体热舒适程度.  相似文献   

14.
个性化送风波动对热感觉和室内空气品质的影响   总被引:2,自引:0,他引:2  
为了解个性化通风环境下波动风对人体热舒适和室内空气品质的影响,在系统中实现传统的稳态送风和频率分别为0.1、0.2、0.3Hz的波动送风。采用受试者的主观感受和示踪气体测量两种方式,比较了这几种送风对改善室内热环境和空气品质的效果。实验表明:室温28℃时,个性化通风下人体最喜爱的送风波动频率为0.2Hz。该频率的波动风相对于稳态风有更强的冷却作用,并且该波动风不会降低吸入空气的品质。  相似文献   

15.
严寒地区建筑热舒适适应性模型   总被引:2,自引:0,他引:2  
为了研究严寒地区建筑的热环境和人体热舒适适应性模型,对哈尔滨某建筑物内的热舒适度进行了现场研究。在测量室内热舒适参数的同时,通过问卷调查,得到了135份人体热反应的样本。结果表明,哈尔滨某自然通风建筑人体热中性温度为25.6℃,热期望温度为25.4℃。男性受试者热中性温度为25.5℃,女性受试者热中性温度为25.7℃。严寒地区热舒适适应性模型为Tcomf=0.28×Tout+20.4,该模型与其他国家学者的研究有一定的相似性。  相似文献   

16.
太阳能炕的蓄热特性研究及其对睡眠热舒适度的影响   总被引:1,自引:0,他引:1  
结合北方传统火炕的特点,建立了与太阳能热水系统结合的太阳能炕理论模型,并搭建太阳能炕系统实验台,进行了实验测试,模拟计算结果与实验测试结果吻合较好.依据通过实验验证的模型,采用合肥实测的气象数据,分析了太阳能炕系统在冬天工作时对睡眠热舒适度和室内热环境的影响.结果显示:在室外平均温度0℃左右和炕面温度不超过35℃的条件下,室内空气温度维持在8~15℃之间,在晚上21点太阳能热水系统对炕停止加热后,人所处的睡眠环境能保持在28.5~34℃的热舒适温度区间,太阳能贡献率为34.5%.  相似文献   

17.
采用试验和数值仿真方法分析研究了地板辐射供暖室内舒适性。研究结果表明:随着进水温度不断提高,室内温度呈现上升趋势,在竖直方向温度出现分层现象,且室内温度分布的实验值略低于模拟值;针对进水为45℃、50℃、55℃3种不同工况,结合室内温度分布、PMV-PPD指标以及室内速度分布状况分析可知,进水为50℃时室内具有最佳的温度与热舒适度;对于3种工况下的室内空气流动状况,均在人体可接受范围以内,对室内热舒适性影响较小。  相似文献   

18.
针对目前室内热环境调节缺少合理控制方法的问题,本文在分析温度、湿度、风速和平均辐射温度四个热环境参数对PMV指数影响的基础上,基于人体舒适度模型的模糊控制,将嵌入式ARM9芯片作为主控制芯片,结合无线传感网络,设计了一种室内舒适度控制器,并阐述了其系统构成与决策方法。该控制器不仅布设方便,而且能够在保证人体室内舒适度的情况下,减少调节室内热环境过程中带来的能耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号