首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia   总被引:19,自引:0,他引:19  
Seven Fanconi anemia-associated proteins (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCL) form a nuclear Fanconi anemia core complex that activates the monoubiquitination of FANCD2, targeting FANCD2 to BRCA1-containing nuclear foci. Cells from individuals with Fanconi anemia of complementation groups D1 and J (FA-D1 and FA-J) have normal FANCD2 ubiquitination. Using genetic mapping, mutation identification and western-blot data, we identify the defective protein in FA-J cells as BRIP1 (also called BACH1), a DNA helicase that is a binding partner of the breast cancer tumor suppressor BRCA1.  相似文献   

2.
3.
BRIP1 (also called BACH1) is a DEAH helicase that interacts with the BRCT domain of BRCA1 (refs. 1-6) and has an important role in BRCA1-dependent DNA repair and checkpoint functions. We cloned the chicken ortholog of BRIP1 and established a homozygous knockout in the avian B-cell line DT40. The phenotype of these brip1 mutant cells in response to DNA damage differs from that of brca1 mutant cells and more closely resembles that of fancc mutant cells, with a profound sensitivity to the DNA-crosslinking agent cisplatin and acute cell-cycle arrest in late S-G2 phase. These defects are corrected by expression of human BRIP1 lacking the BRCT-interaction domain. Moreover, in human cells exposed to mitomycin C, short interfering RNA-mediated knock-down of BRIP1 leads to a substantial increase in chromosome aberrations, a characteristic phenotype of cells derived from individuals with Fanconi anemia. Because brip1 mutant cells are proficient for ubiquitination of FANCD2 protein, our data indicate that BRIP1 has a function in the Fanconi anemia pathway that is independent of BRCA1 and downstream of FANCD2 activation.  相似文献   

4.
Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer, but account for only a small fraction of breast cancer susceptibility. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2(*)1100delC, a truncating variant that abrogates the kinase activity, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2(*)1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.  相似文献   

5.
BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage   总被引:27,自引:0,他引:27  
The breast cancer tumor-suppressor gene, BRCA1, encodes a protein with a BRCT domain-a motif that is found in many proteins that are implicated in DNA damage response and in genome stability. Phosphorylation of BRCA1 by the DNA damage-response proteins ATM, ATR and hCds1/Chk2 changes in response to DNA damage and at replication-block checkpoints. Although cells that lack BRCA1 have an abnormal response to DNA damage, the exact role of BRCA1 in this process has remained unclear. Here we show that BRCA1 is essential for activating the Chk1 kinase that regulates DNA damage-induced G2/M arrest. Thus, BRCA1 controls the expression, phosphorylation and cellular localization of Cdc25C and Cdc2/cyclin B kinase-proteins that are crucial for the G2/M transition. We show that BRCA1 regulates the expression of both Wee1 kinase, an inhibitor of Cdc2/cyclin B kinase, and the 14-3-3 family of proteins that sequesters phosphorylated Cdc25C and Cdc2/cyclin B kinase in the cytoplasm. We conclude that BRCA1 regulates key effectors that control the G2/M checkpoint and is therefore involved in regulating the onset of mitosis.  相似文献   

6.
7.
Mutations in BRCA1 (ref. 1) confer an increased risk of female breast cancer. In a genome-wide scan of linkage disequilibrium (LD), a high level of LD was detected among microsatellite markers flanking BRCA1 (ref. 3), raising the prospect that positive natural selection may have acted on this gene. We have used the predictions of evolutionary genetic theory to investigate this further. Using phylogeny-based maximum likelihood analysis of the BRCA1 sequences from primates and other mammals, we found that the ratios of replacement to silent nucleotide substitutions on the human and chimpanzee lineages were not different from one another (P=0.8), were different from those of other primate lineages (P=0.004) and were greater than 1 (P=0.04). This is consistent with the historic occurrence of positive darwinian selection pressure on the BRCA1 protein in the human and chimpanzee lineages. Analysis of genetic variation in a sample of female Australians of Northern European origin showed evidence for Hardy-Weinberg (HW) disequilibrium at polymorphic sites in BRCA1, consistent with the possibility that natural selection is affecting genotype frequencies in modern Europeans. The clustering of between-species variation in the region of the gene encoding the RAD51-interaction domain of BRCA1 suggests the maintenance of genomic integrity as a possible target of selection.  相似文献   

8.
Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.  相似文献   

9.
Fanconi anemia is associated with a defect in the BRCA2 partner PALB2   总被引:1,自引:0,他引:1  
The Fanconi anemia and BRCA networks are considered interconnected, as BRCA2 gene defects have been discovered in individuals with Fanconi anemia subtype D1. Here we show that a defect in the BRCA2-interacting protein PALB2 is associated with Fanconi anemia in an individual with a new subtype. PALB2-deficient cells showed hypersensitivity to cross-linking agents and lacked chromatin-bound BRCA2; these defects were corrected upon ectopic expression of PALB2 or by spontaneous reversion.  相似文献   

10.
Inherited mutations in the gene BRCA2 predispose carriers to early onset breast cancer, but such mutations account for fewer than 2% of all cases in East Anglia. It is likely that low penetrance alleles explain the greater part of inherited susceptibility to breast cancer; polymorphic variants in strongly predisposing genes, such as BRCA2, are candidates for this role. BRCA2 is thought to be involved in DNA double strand break-repair. Few mice in which Brca2 is truncated survive to birth; of those that do, most are male, smaller than their normal littermates and have high cancer incidence. Here we show that a common human polymorphism (N372H) in exon 10 of BRCA2 confers an increased risk of breast cancer: the HH homozygotes have a 1.31-fold (95% CI, 1.07-1.61) greater risk than the NN group. Moreover, in normal female controls of all ages there is a significant deficiency of homozygotes compared with that expected from Hardy-Weinberg equilibrium, whereas in males there is an excess of homozygotes: the HH group has an estimated fitness of 0.82 in females and 1.38 in males. Therefore, this variant of BRCA2 appears also to affect fetal survival in a sex-dependent manner.  相似文献   

11.
Inheritance of one defective BRCA2 allele predisposes humans to breast cancer. To establish a mouse model for BRCA2-associated breast cancer, we generated mouse conditional mutants with BRCA2 and/or p53 inactivated in various epithelial tissues, including mammary-gland epithelium. Although no tumors arose in mice carrying conditional Brca2 alleles, mammary and skin tumors developed frequently in females carrying conditional Brca2 and Trp53 alleles. The presence of one wildtype Brca2 allele resulted in a markedly delayed tumor formation; loss of the wildtype Brca2 allele occurred in a subset of these tumors. Our results show that inactivation of BRCA2 and of p53 combine to mediate mammary tumorigenesis, and indicate that disruption of the p53 pathway is pivotal in BRCA2-associated breast cancer.  相似文献   

12.
13.
Extremes of the electrocardiographic QT interval, a measure of cardiac repolarization, are associated with increased cardiovascular mortality. We identified a common genetic variant influencing this quantitative trait through a genome-wide association study on 200 subjects at the extremes of a population-based QT interval distribution of 3,966 subjects from the KORA cohort in Germany, with follow-up screening of selected markers in the remainder of the cohort. We validated statistically significant findings in two independent samples of 2,646 subjects from Germany and 1,805 subjects from the US Framingham Heart Study. This genome-wide study identified NOS1AP (CAPON), a regulator of neuronal nitric oxide synthase, as a new target that modulates cardiac repolarization. Approximately 60% of subjects of European ancestry carry at least one minor allele of the NOS1AP genetic variant, which explains up to 1.5% of QT interval variation.  相似文献   

14.
Parallel domestication of the Shattering1 genes in cereals   总被引:3,自引:0,他引:3  
  相似文献   

15.
Ye JZ  de Lange T 《Nature genetics》2004,36(6):618-623
Telomere length in humans is partly controlled by a feedback mechanism in which telomere elongation by telomerase is limited by the accumulation of the TRF1 complex at chromosome ends. TRF1 itself can be inhibited by the poly(ADP-ribose) polymerase (PARP) activity of its interacting partner tankyrase 1, which abolishes its DNA binding activity in vitro and removes the TRF1 complex from telomeres in vivo. Here we report that the inhibition of TRF1 by tankyrase is in turn controlled by a second TRF1-interacting factor, TIN2 (ref. 6). Partial knockdown of TIN2 by small hairpin RNA in a telomerase-positive cell line resulted in telomere elongation, which is typical of reduced TRF1 function. Transient inhibition of TIN2 with small interfering RNA led to diminished telomeric TRF1 signals. This effect could be reversed with the PARP inhibitor 3-aminobenzamide and did not occur in cells overexpressing a PARP-dead mutant of tankyrase 1. TIN2 formed a ternary complex with TRF1 and tankyrase 1 and stabilized their interaction, an effect also observed with the PARP-dead mutant of tankyrase 1. In vitro, TIN2 protected TRF1 from poly(ADP-ribosyl)ation by tankyrase 1 without affecting tankyrase 1 automodification. These data identify TIN2 as a PARP modulator in the TRF1 complex and can explain how TIN2 contributes to the regulation of telomere length.  相似文献   

16.
Interactions of killer cell immunoglobulin-like receptors (KIRs) with major histocompatibility complex (MHC) class I ligands diversify natural killer cell responses to infection. By analyzing sequence variation in diverse human populations, we show that the KIR3DL1/S1 locus encodes two lineages of polymorphic inhibitory KIR3DL1 allotypes that recognize Bw4 epitopes of protein">HLA-A and HLA-B and one lineage of conserved activating KIR3DS1 allotypes, also implicated in Bw4 recognition. Balancing selection has maintained these three lineages for over 3 million years. Variation was selected at D1 and D2 domain residues that contact HLA class I and at two sites on D0, the domain that enhances the binding of KIR3D to HLA class I. HLA-B variants that gained Bw4 through interallelic microconversion are also products of selection. A worldwide comparison uncovers unusual KIR3DL1/S1 evolution in modern sub-Saharan Africans. Balancing selection is weak and confined to D0, KIR3DS1 is rare and KIR3DL1 allotypes with similar binding sites predominate. Natural killer cells express the dominant KIR3DL1 at a high frequency and with high surface density, providing strong responses to cells perturbed in Bw4 expression.  相似文献   

17.
Congenital fibrosis of the extraocular muscles type 1 (CFEOM1; OMIM #135700) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. We show that individuals with CFEOM1 harbor heterozygous missense mutations in a kinesin motor protein encoded by KIF21A. We identified six different mutations in 44 of 45 probands. The primary mutational hotspots are in the stalk domain, highlighting an important new role for KIF21A and its stalk in the formation of the oculomotor axis.  相似文献   

18.
19.
20.
In telomerase-deficient Saccharomyces cerevisiae, telomeres are maintained by recombination. Here we used a S. cerevisiae assay for characterizing gross chromosomal rearrangements (GCRs) to analyze genome instability in post-senescent telomerase-deficient cells. Telomerase-deficient tlc1 and est2 mutants did not have increased GCR rates, but their telomeres could be joined to other DNAs resulting in chromosome fusions. Inactivation of Tel1 or either the Rad51 or Rad59 recombination pathways in telomerase-deficient cells increased the GCR rate, even though telomeres were maintained. The GCRs were translocations and chromosome fusions formed by nonhomologous end joining. We observed chromosome fusions only in mutant strains expressing Rad51 and Rad55 or when Tel1 was inactivated. In contrast, inactivation of Mec1 resulted in more inversion translocations such as the isochromosomes seen in human tumors. These inversion translocations seemed to be formed by recombination after replication of broken chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号