首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
一种基于用户聚类的协同过滤推荐算法   总被引:3,自引:0,他引:3  
为解决传统协同过滤算法在生成推荐时的速度瓶颈问题,提出了一种基于用户聚类的协同过滤推荐算法。该算法将推荐过程分成了离线和在线两个部分。离线时,算法对基本用户数据进行预处理,并对基本用户聚类;在线时,算法利用已有的用户聚类寻找目标用户最近邻居,并产生推荐。实验表明,基于用户聚类的协同过滤推荐算法不仅加快了推荐生成速度,而且提高了推荐质量。  相似文献   

2.
协同过滤是电子商务推荐系统中广泛应用的推荐技术, 但面临着严重的用户评分数据高维化和稀疏性问题. 同时, 传统协同过滤中的相似度度量方法没有考虑用户评分行为对其他用户的影响, 因而对评分预测的精度影响较大. 此外, 在移动环境下, 传统协同过滤未结合情境信息, 导致推荐质量下降. 对此, 提出一种基于情境聚类和用户评级的协同过滤模型. 首先, 根据情境信息对用户进行聚类, 降低用户评分数据维度和稀疏性; 然后, 引入社会网络理论分析用户间关系, 建立用户评级模型用于评价用户推荐能力, 并结合评级指标进行评分预测. 通过MovieLens和NetFlix数据集对基于该模型的SlopeOne算法和其它三种方法的比较验证结果表明: 本模型在所有数据集上都获得了最高的预测精度, 同时还具有最佳的推荐覆盖度, 可显著提高预测精度, 更适用于移动电子商务环境下的个性化推荐问题.  相似文献   

3.
协同过滤推荐算法通常是基于兴趣相似的用户行为来实现个性化推荐, 其核心义用户之间的兴趣相似度. 本文在传统的协同过滤推荐算法基础上, 考虑在线评论对用似度识别的影响. 在混合商品推荐中, 粗粒度识别评论情感极性; 而在同类商品推荐中, 细粒别每个商品特征的情感极性. 如果用户对产品的某个特征评价次数大于平均次数, 表明用户对征较关注; 如果对产品的某个特征评价低于平均评价, 表明用户对该特征较挑剔. 进而根据用户评论来建立用户偏好模型, 用户在评论中反映出来的相似度越高, 表明用户之间的偏好越. 实验表明, 同传统的协同过滤算法相比, 基于在线评论情感分析的用户协同过滤算法在率和召回率指标上有显著提升.  相似文献   

4.
基于用户兴趣的混合推荐模型   总被引:4,自引:0,他引:4  
从用户特征描述出发,分析用户兴趣模型的表达机制,提出一种基于用户兴趣的混合模式推荐方法.该方法将内容过滤和协同过滤的预测值进行加权求和,形成最终的综合相似度.实验结果表明,该方法的性能同时优于基于用户协同过滤的推荐方法和基于内容过滤的推荐方法,推荐系统的推荐质量得到显著提高.  相似文献   

5.
面向协同过滤的真实偏好高斯混合模型   总被引:1,自引:0,他引:1  
针对协同过滤问题,提出了一种基于高斯混合的概率模型,称为真实偏好高斯混合模型.用户对项目的评分由三个因素决定:用户对项目主题和内容的真实偏好,用户的评分习惯,以及项目的公众评价.引入了两个隐含变量,分别用于描述用户类和项目类,用户和项目依概率可以同时属于多个类.模型包括离线建模过程和在线预测过程,在线预测可以在常数时间内完成.实验表明新模型的预测结果明显优于其他几种协同过滤算法.  相似文献   

6.
协同过滤推荐是目前个性化推荐系统中使用最为广泛的方法.然而,传统协同过滤推荐一方面仅根据用户对项目的评分来判断用户之间是否存在共同喜好具有一定的片面性,因而降低了近邻搜索的质量;另一方面忽略了不同情境对用户偏好影响的差异性,进而影响了个性化推荐的效果.为此,提出一种基于情境化用户偏好的协同过滤推荐模型.首先,在模型中采用信息熵理论分析不同情境对用户偏好产生影响的重要程度,并结合用户-商品评分和用户对商品属性的偏好来搜索近邻用户;在此基础上,将情境重要度的权重引入到协同过滤推荐的生成过程中进而产生推荐结果.通过MovieLens数据集对该模型和其它两种协同过滤推荐进行比较的结果表明:本模型具有较低的平均误差,进而表明了考虑情境化用户偏好的协同过滤可明显改善个性化推荐的质量.  相似文献   

7.
面向场景的协同过滤推荐算法   总被引:10,自引:0,他引:10  
推荐系统是电子商务系统中最重要的技术之一。用户相似性度量方法是影响推荐算法准确率高低的关键因素,针对传统相似性度量方法存在的不足,利用云模型在定性知识表示以及定性、定量知识转换时的桥梁作用,提出一种在知识层面比较用户相似度的方法,克服了传统基于向量的相似度比较方法严格匹配对象属性的不足。进而以该方法为核心,提出一种面向场景的协同过滤推荐算法,该算法能够充分利用项目的分类信息,避免了传统算法把用户的整体打分作为单个向量的弊端。实验结果表明,算法可以在用户评分数据极端稀疏的情况下,仍能取得较高的推荐质量。  相似文献   

8.
协同过滤是目前个性化推荐系统中广泛使用和最成功的推荐算法,但在用户评分极端稀疏的情况下将面临冷启动问题, 具体包括新用户问题和新项目问题.针对新用户问题,提出了一种基于n序访问解析逻辑的冷启动消除方法, 首先通过Web日志来获取用户访问项序,进而定义了n序访问解析逻辑将其分解为用户访问子序集; 在此基础上设计了用户访问项序的相似性计算方法来搜寻新用户的最近邻集合, 进而提出了改进最频繁项提取算法IMIEA (improved most-frequent items extracting algorithm)来生成面向新用户的top-N推荐. 实验结果表明,本文提出的新方法能够有效实现面向新用户的个性化推荐,消除了协同过滤冷启动中的新用户问题.  相似文献   

9.
基于协同过滤和网络结构的个性化推荐算法   总被引:1,自引:0,他引:1  
综合了经典的协同过滤算法和基于网络结构的个性化推荐算法.项目同其他所有项目的相似度之和被认为是项目在个性化推荐系统中的初始推荐资源,然后通过二部图的网络结构将这种资源进行重新分配.同时考虑两个项目之间的相互作用关系,提出了最终的推荐算法.最后,根据用户未曾收集项目最终所获得的资源进行排序,向用户推荐资源最多的项目.通过...  相似文献   

10.
提出了一种多路归一化割谱聚类方法、独立成分分析法、GARCH模型和Granger模型相结合的金融风险协同溢出模型。利用GARCH模型提取波动;利用谱聚类方法对波动数据集进行聚类分析;再利用独立成分分析法提取每个类的独立成分;最后,利用Granger因果检验分析每个类提取出的主成分对其余类中股指的风险溢出,从而完成金融风险的协同溢出计量。采用本文提出的模型对近几次金融危机期间全球主要股指进行了金融风险协同溢出分析。实证结果表明,本文提出的方法能较好地刻画金融风险的协同溢出效应。  相似文献   

11.
一种基于自组织特征映射网络的聚类方法   总被引:7,自引:0,他引:7  
针对传统聚类算法不能有效地处理大数据集和高维数据集的问题,提出了一种基于自组织特征映射网络的聚类方法。该方法能将任意维输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变,而且无需监督,能自动对输入模式进行聚类。给出了应用该方法的具体步骤和加速自组织过程的若干改进方法,通过仿真实验证明该算法的有效性。  相似文献   

12.
众包平台的信息过载使工人面临任务选择的困难.针对众包特征,本研究提出一种考虑工人兴趣和能力的任务推荐方法.该方法基于协同过滤推荐思想,首先通过TF-IDF技术构建考虑兴趣偏好的工人模型,然后将基于胜任力理论分析构建的工人KSAO能力集合融入到模型中,构建新的工人模型;在此基础上,利用余弦相似性、Jaccard相似性和改进的余弦相似性公式,计算工人间融合兴趣和能力的综合相似度,依此来选取近邻集并最终生成推荐.利用猪八戒网采集的数据进行实验,结果表明该方法的有效性,并通过对比实验证实该方法比传统协同过滤方法推荐效果更佳.从推荐视角丰富众包任务选择的研究,对于众包中解决信息过载、增进个性化体验等具有一定的现实意义.  相似文献   

13.
1.INTRODUCTIONIn modern high technology war,the electroniccounter measures(ECM)and precise guidance tech-nology are rapidly developed and becoming the re-search hotspot of militarysciencefor all the countries.The guidance missiles are the main weapons andhigher anti-jamming ability and guidance precision arerequired for guidance radar.For the active mono-pulse guidance radar,the angle information of thetarget is obtained by usingthe angle measured methodof amplitude sum/difference or pha…  相似文献   

14.
在分析了Kohonen自组织特征映射网络(SOFM)和学习矢量量化(LVQ)算法的基础上,提出一种基于改进的SOFM算法和LVQ2算法的混合学习矢量量化(HLVQ)方法,并建立了基于HLVQ的遥感影像非监督和监督分类的一般模型。通过与传统的统计分类方法和LVQ2网络分类器比较,HLVQ分类器总的分类性能更好、识别率更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号