首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
光伏电池最大功率点跟踪   总被引:1,自引:0,他引:1  
为了快速稳定地跟踪到光伏电池最大功率点,提出基于固定电压法和导纳增量法相结合的光伏电池最大功率点跟踪(MPPT)方案.固定电压法用来迅速跟踪近似最大功率点,导纳增量法则用来进行精确跟踪,仿真结果表明此方案能快速地跟踪到光伏电池的最大功率点.在此基础上加入环境判断因子,提高了光伏电池在多云天气情况下最大功率点跟踪的稳定性.  相似文献   

2.
适用于无线传感器网络太阳能系统的MPPT算法   总被引:1,自引:0,他引:1  
结合无线传感器网络节点的工作特点及光伏供电系统特性,设计了一种新型光伏电池最大功率点跟踪算法。利用光伏电池物理特性中最大功率点随工作环境温度变化的事实,在无线传感器网络节点工作周期内将环境温度测量值引入跟踪算法中,实现系统最大功率点跟踪高可靠性、低复杂性、低成本及较高精度的目标。数学模型仿真及小型光伏电池实际测试结果均...  相似文献   

3.
针对太阳能光伏系统是一个强非线性系统,太阳电池的工作情况很难用精确的数学模型来描述。根据光伏电池最大功率点跟踪原理,比较常用的MPPT方法的优缺点,将模糊控制理论引入到MPPT控制中,使系统能够快速响应外部环境变化,减轻最大功率点附近的功率震荡。论文建立了光伏系统的仿真模型,采取模糊控制策略,实现最大功率点的跟踪控制。  相似文献   

4.
对光伏电池最大功率点跟踪问题(MPPT)提出了模糊控制算法,并利用MATLAB进行了仿真。结果表明,该算法在最大功率点处转换效率较高。  相似文献   

5.
为了提高太阳能发电效率,提出了一种新的太阳能最大功率跟踪方法。该改进算法由扰动观察法和二次插值法相结合进行最大功率点跟踪,利用二次插值法可以缩小搜索范围的特点,克服了扰动观察法在最大功率点附近产生的震荡现象,从而减小误判。通过MATLAB建模仿真的结果表明,改进算法能够快速地搜索到最大功率点,提高太阳能发电系统的稳定性。  相似文献   

6.
针对光伏发电系统最大功率点跟踪(MPPT)算法的跟踪速度、精准度及稳定性不理想的问题,提出了一种基于三次插值法改进的自适应爬山法。该方法是通过利用三次插值法改进的自适应爬山法,能够快速准确地达到对最大功率点进行跟踪。利用MATLAB/Simulink搭建了光伏发电系统MPPT跟踪控制仿真模型。仿真结果表明,该算法能够显著提高MPPT跟踪的速度、准确度和稳定性。  相似文献   

7.
光伏发电受制于太阳能电池较低的转换效率,使得其最大功率点的跟踪,成为提高光伏发电效率的关键。通过对太阳能电池等效电路和输出特性的分析以及对最大功率点跟踪原理的研究,利用 Matlab/Simulink,并结合Boost 电路,构建了通用型的光伏系统仿真模型。该仿真模型采用扰动观测法跟踪太阳能电池最大功率,并对太阳能电池在环境温度、日照强度固定及动态变化情况下的最大功率点跟踪进行了仿真测试,测试当两者同时变化时,日照强度变化对太阳能电池输出功率的最大值影响比较大,其中当日照强度增大200,W/m2时其输出最大功率增幅达28%。仿真结果表明,该模型能够准确迅速地对太阳能电池的最大功率点进行跟踪。  相似文献   

8.
MPPT(最大功率点跟踪)技术是光伏电池工作效率的关键,本文在对传统MPPT算法分析的基础上,提出了一种改进的最大功率点跟踪算法。该算法首先利用数值计算中函数极值的求取方法拟合出太阳能电池的输出特性曲线,在拟合曲线的基础上再通过最优梯度法进行MPP点的跟踪,大大提高了系统的追踪性能和效率。通过在Matlab/Simulink平台搭建光伏电池模型,进行算法仿真,验证了所提算法的有效性。  相似文献   

9.
针对扰动观察法的速度和精度在很大程度上受扰动初始值和扰动步长的影响,且在最大功率点附近存在功率振荡现象等问题,提出一种改进扰动观察法。首先当日照变化较快时,利用短路电流使输出功率能够快速跟踪在最大功率点附近,然后采用可变步长的扰动观察法使光伏电池稳定在最大功率点。通过仿真实验证明该改进方法明显缩短了最大功率点的跟踪时间,并且基本消除了功率振荡现象,提高了最大功率点跟踪控制技术。  相似文献   

10.
为更好的跟踪光伏发电系统最大功率点,通过对光伏电池特性的分析,在电导增量算法基础上引入模糊控制,采用了一种电导增量法与模糊控制结合的最大功率点跟踪(MPPT)算法.通过设计模糊控制器以及搭建光伏电池MPPT仿真模型,并与传统电导增量法进行仿真比较,实验结果表明,基于模糊控制与电导增量法的MPPT提高了跟踪速度,减小了稳定运行时系统的震荡问题.  相似文献   

11.
通过对光伏电池特性的分析以及对电导增量法和模糊控制技术两种最大功率点跟踪(MPPT)方法的研究,提出了组合两种算法的MPPT技术.仿真结果和实验数据均表明,组合算法能使光伏发电系统快速、准确地跟踪最大功率点,提升了系统总体性能,具有良好的动态和稳态特性.  相似文献   

12.
光伏发电系统在遮挡条件下会出现阴影效应,为了解决光伏阵列最大功率点跟踪方法精度低的问题,提出一种光伏阵列最大功率点跟踪方法.根据光伏发电系统的结构和局部遮挡条件下的最大功率点输出特性,由光伏电池等效电路建立光伏电池的数学模型,采用人工鱼群算法实现光伏阵列最大功率的轨迹跟踪,并在Matlab实验平台上测试其有效性.该方法克服了传统方法的局限性,能够对光伏阵列最大功率点进行高精度跟踪,提高了光伏阵列最大功率点的跟踪效率,改善了光伏发电系统的工作性能.  相似文献   

13.
基于模糊控制的光伏发电最大功率点跟踪   总被引:2,自引:0,他引:2  
光伏电池的输出特性随负载及外界环境的变化而变化,采用最大功率点跟踪电路可充分发挥光伏器件的效能。根据常用光伏发电系统控制的优缺点及最大功率点跟踪的基本原理,本文提出了基于模糊控制具有在线参数调整的自适应占空比扰动法。当外界环境变化时,仿真结果显示系统能够很好的跟踪此变化,使系统始终工作在最大功率点附近,具有很好的稳定性。  相似文献   

14.
为了寻找更好的实现光伏发电系统最大功率点跟踪控制方法,基于仿真模型,研究了太阳能光伏电池阵列的特性。采用Matlab/Simulink模块,基于单个光伏电池的物理特性建立了太阳能光伏电池阵列的仿真模型。模型不但能分析太阳能光伏电池阵列所具有的随着光照强度和温度不同而变化的P-V和I-V非线性特性,而且可仿真太阳能光伏电池阵列工作在最大功率点以及稳定工作区域内时具有线性关系,并进行了理论推导。该模型简单明了,计算速度快。仿真结果表明:仿真与实验结果相符合,当光伏阵列工作在稳定区域内的情况下,dP/dV与I存在线性关系,模型具有通用性与实用性。  相似文献   

15.
在局部阴影的条件下,由于光伏阵列的P-U曲线会存在多个峰值点,传统的扰动观测方法不能快速追踪到最大功率点。本文对粒子群算法的设计参数、执行流程等方面进行优化,提出了一种基于自适应粒子群算法对光伏并网系统MPPT的控制策略,最后进行了Matlab/Simulink仿真。结果表明,该控制策略可以快速、准确地搜寻到最大功率点,能够抑制复杂条件下环境因素的影响,提高算法的跟踪精度和光伏电池的整体工作效率。  相似文献   

16.
基于仿真模型的太阳能光伏电池阵列特性的分析   总被引:16,自引:0,他引:16  
为了寻找更好的实现光伏发电系统最大功率点跟踪控制方法,基于仿真模型,研究了太阳能光伏电池阵列的特性。采用Matlab/Simulink模块,基于单个光伏电池的物理特性建立了太阳能光伏电池阵列的仿真模型。模型不但能分析太阳能光伏电池阵列所具有的随着光照强度和温度不同而变化的P-U和I-U非线性特性,而且可仿真太阳能光伏电池阵列工作在最大功率点以及稳定工作区域内时具有线性关系,并进行了理论推导。该模型简单明了,计算速度快。仿真结果表明:仿真与实验结果相符合,当光伏阵列工作在稳定区域内的情况下,dP/dU与I存在线性关系,模型具有通用性与实用性。  相似文献   

17.
光伏电池输出功率随外部环境和负载的变化而变化,要提高光伏发电系统的输出效率须采用有效的最大功率点跟踪算法.针对光伏电池的非线性特性,提出了一个基于增量电导法、以升降压斩波器为核心的光伏能量转换系统.经PSIM和LabVIEW软件仿真证实,该方法能使系统稳定工作在最大功率点,同时能对外界环境的变化做出快速反应.  相似文献   

18.
基于光伏电池的工程模型,利用MATLAB中的simulink模块,建立光伏电池的近似模型,并仿真出不同温度下的光伏电池输出特性.仿真结果表明,该模型能够快速响应光照强度变化.当光照强度突变时,能够快速实现最大功率跟踪.  相似文献   

19.
光伏并网发电系统MPPT算法研究   总被引:2,自引:1,他引:1  
针对光伏并网发电系统最大功率点跟踪(MPPT)问题进行研究,在详细分析光伏电池阵列的基础上,对常用的最大功率点跟踪算法进行了分析,提出了逐次逼近型算法,并对该算法与其他常用算法进行了比较。结果表明,该算法可以快速、准确地追踪到最大功率点,具有很好的效果。  相似文献   

20.
根据光伏电池的工程数学模型,利用Matlab/simulink软件对光伏电池的输出特性进行了仿真,模拟了光伏电池的输出特性,讨论了温度和光照强度对光伏电池输出特性的影响.此外,还研究了基于电导增益法的最大功率点跟踪算法,分析了最大功率点附近的振荡现象.结果表明,采用变步长的电导增益法,可以有效地抑制最大功率点附近的振荡现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号