首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
一种快速高斯粒子滤波算法   总被引:1,自引:1,他引:1  
为改善高斯粒子滤波(GPF)算法的实时性,研究了一种快速的GPF算法.在GPF的预测及更新步骤中用初始粒子群的线性变换取代高斯分布采样,以降低生成新粒子群所需时间,提高滤波算法的运行速度.对两种生成粒子群方法的复杂度及粒子群所代表的分布进行了分析,分析结果表明:线性变换法和高斯采样法生成的粒子群所代表的分布相同,且线性变换法的运行效率更高.将粒子滤波算法(PF),GPF算法及改进后的GPF算法分别应用于一维的一种离散时变非线性模型和二维的基于角度目标跟踪(BOT)模型,仿真结果表明:改进后GPF算法预测性能不变,速度得到了提高,生成1 000个粒子平均需时22 ms,比GPF算法减少了6 ms.  相似文献   

2.
针对高斯厄米特粒子概率假设密度(probability hypothesis density,PHD)算法可能导致滤波计算复杂度较高、精度不强,性能较差的问题,提出一种自适应高斯厄米特粒子PHD的改进算法,该算法通过在高斯变换的过程中引入阈值,以该闽值为界剔除权值较小的积分点,对大于阈值的积分点进行归一化处理,在保证滤波精度的基础之上,减小权值较小点在计算上带来的冗余;另外在高斯厄米特滤波的过程中引入了自适应因子,适当调整高斯厄米特滤波过程中的增益,自适应调节滤波的均值与方差,以提高滤波过程的精度.仿真结果表明:改进后的算法相比于高斯厄米特粒子PHD算法在精度上有明显提高,同时简化了计算复杂度,达到预期的目的.  相似文献   

3.
针对基于高斯滤波的重要性采样方法运算量的明显增加主要集中在使用高斯滤波生成更好的重要性密度函数的问题,提出了一种新的高斯衍生粒子滤波算法(GDPF).该算法将一种类似光子衍射的粒子衍生重要性采样方法与现有的高斯辅助粒子滤波算法(GAPF)相结合,通过粒子的扩张与收缩,在保证不减少参与状态估计的粒子数的条件下减少更新粒子数,根据粒子权值大小自适应地调整衍生粒子数,能很好地缓解精度与运算量之间的矛盾,抑制粒子退化等问题.对衍生粒子进行理论分析,证明了其与高斯采样粒子的等效性.仿真结果表明,当选取了相同的参与状态估计的粒子数时,所提算法保持了与原算法相当的估计精度,同时运算量大大降低.  相似文献   

4.
粒子滤波算法是近年来提出的一种较新的算法.通常的粒子滤波利用采样重要性重抽样算法,该算法选用先验分布,但它易受外部观测量的影响,因而会导致权值变化较大,并且引起较高的蒙特卡罗方差以致会使滤波性能较差.为此,本文引入一个辅助变量,利用一种新的使用二次加权操作的粒子滤波算法--辅助粒子滤波算法来对采样重要性重抽样算法进行改进.最后,通过两个仿真实例一维非线性追踪模型和二维纯方位目标追踪模型,进一步分析指出辅助粒子滤波算法比采样重要性重抽样算法更有效.  相似文献   

5.
为克服粒子群在解决多峰函数复杂问题时存在收敛速度慢和极易陷入局部最优值的缺点,提出了一种基于高斯学习多峰延迟粒子群混合算法。首先引入改进的高斯学习提高算法的收敛速度,然后在此基础上,针对4 种进化状态在算法中引入延迟因子避免局部最优问题。通过对6 个单峰多峰测试函数进行仿真实验,验证了GLPSO( Gaussian Learning PSO) 算法具有更好的收敛速度,同时验证了GLMDPSO( Gaussian Learning Multimodal Delayed PSO) 算法在处理多峰函数复杂问题时具备更好的全局搜寻能力。因此,改进算法在解决多峰函数寻优问题时可有效跳出停滞状态,提高收敛速度并具有较好的寻优能力。  相似文献   

6.
针对粒子滤波存在粒子退化,会导致检测前跟踪(TBD)算法的检测和跟踪性能下降这一不足,提出了一种基于高斯-哈密顿滤波(GHF)高斯粒子滤波的TBD算法.该算法基于高斯粒子滤波,采用GHF算法构造的重要性密度函数采样连续出现粒子,考虑了最新的量测信息,采样粒子更逼近于真实的后验概率密度,克服了粒子退化问题.仿真结果表明:与基本TBD算法相比,所提出的TBD算法提高了对目标的检测和跟踪性能.  相似文献   

7.
超参数优化是减少高斯过程回归(Gaussian process regression,GPR)学习方法计算量,提高高斯模型性能的一个重要问题。为解决超参数优化问题中先验知识匮乏,对初始值过分依赖且易陷入局部最优等问题,文章引入粒子群优化(particle swarm optimization,PSO)算法,并结合差分速度更新公式及自适应变异策略,提出了一种自适应差分粒子群-高斯过程回归优化(adaptive differential particle swarm optimization-Gaussian process regression,ADPSO-GPR)算法对GPR中超参数进行自适应优化。该算法在线性与非线性两类时序回归序列上与多种主流超参数优化算法进行对比,实验结果表明,采用该文算法优化超参数后的GPR具有较高的拟合精度及泛化能力。  相似文献   

8.
为提高算法在高维函数上的寻优性能,提出改进鱼群粒子群混合算法。该算法将鱼群算法全局搜索性能好与粒子群算法局部搜索性能强的优点相结合,在寻优初始阶段采用鱼群算法获得最优群体,在后期用粒子群算法实现精搜索。针对初始种群随意性大、分布不均的问题,通过均匀初始化,优化初始种群的分布; 并对算法全局搜索方向性差、效率低的问题,采用仿照蛙跳算法的分组方式对种群进行分组,同时对组内优秀个体和一般个体使用不同搜索策略,提高搜索的目的性和效率。引入改进的精英高斯学习,从而提升最终结果的精度。利用该算法对6 个标准函数寻优并与其他算法比较,结果表明,该算法的改进有效且性能优于其他算法。  相似文献   

9.
针对高斯粒子滤波(GPF)在多峰高斯假设条件下不能满足贝叶斯估计精度的问题,提出一种基于粒子群优化的高斯粒子滤波算法(PSO-GPF).该算法用粒子群优化算法更新高斯建议分布的参数,解决粒子退化和多峰高斯下的粒子精度问题.同时,带压缩因子的粒子群优化算法能有效平衡粒子的全局探测与局部开采.实验结果表明,新算法的滤波精度比高斯粒子滤波精度平均可提高93.9%,具有更高的稳定性.  相似文献   

10.
针对传统农作物采摘方式落后、采摘效率低、果实特征识别精度低等问题,提出了一种基于SIFT的果实特征匹配算法.对导航机器人采集的果实图像进行去噪与特征提取,然后对不同传感器采集到的含有一定角度偏差的图像进行匹配,得到较精准的特征位置:提出了一种高斯-粒子滤波(Gauss-Particle Filter,Gauss-PF)的SLAM(Simultaneous Localization and Mapping)算法.仿真实验表明,通过增大噪声协方差及特征位置初值误差验证算法的精度,PF和Gauss-PF算法的误差均随时间逐渐降低,且在x,y方向,后者误差均小于1 cm.新的算法具有较强的稳定性与较高的定位精度.最后在同等条件下,基于单个果实特征位置(0,0)的特征进行x,y方向2次观测,并采用Gauss-PF和PF算法对观测值进行量测估计,实验表明新算法均能在(0,0)的较小邻域[-1,1]cm误差范围内对其进行估计,高于PF算法的精度[-2,2]cm.  相似文献   

11.
为了有效避免粒子群算法(PSO)早熟和局部收敛的现象,在深入分析PSO算法的基础上,提出了一种基于高斯白噪声扰动变异的粒子群优化算法(GMPSO).该算法以一定的概率选中粒子进行基于高斯白噪声扰动的变异,并重新随机产生飞离搜索区域的粒子,以克服粒子群后期多样性严重下降的缺点.通过对Benchmark函数的测试表明:GMPSO算法无论是搜索精度、速度还是稳定性均显著优于PSO算法.  相似文献   

12.
为了避免陷入梯度法局部极值以提升模糊聚类算法聚类性能,提出PSO高斯诱导核模糊C均值聚类算法(PSO Gauss-induced kernel fuzzy C-means clustering algorithm,PSO-GIKFCM)。首先将高斯核函数应用于模糊C聚类算法(FCM)目标函数,得到高斯核模糊聚类目标函数。然后在高斯核特征空间和输入空间利用梯度法得到两空间聚类中心,将特征空间聚类中心与样本的内积核矩阵代入输入空间聚类中心,从而得到高斯诱导核的聚类中心。最后在解空间利用粒子群算法(PSO)对模糊隶属度进行寻优估计,并结合目标函数和聚类中心构成PSO-GIKFCM参数估计迭代流程。PSO-GIKFCM算法基于粒子群算法保证其收敛性,聚类中心仅为模糊隶属度的函数,PSO生物进化算法在解空间全局寻找优解,且将模糊指标扩展为大于0的情况。通过仿真实验验证了所提出算法的有效性。  相似文献   

13.
随着橄榄油掺假现象日趋严重,寻找一种简单有效的鉴伪分析方法至关重要.采用基于粒子群优化的高斯混合模型和高斯混合回归结合傅里叶变换红外光谱对橄榄油掺假样品进行定性和定量分析,取得了较好的分析结果.  相似文献   

14.
通过高斯核模糊粗糙集模型与粒子群算法相结合的方式,利用粒子群算法收敛快、精度高等优点,可以减少获得约简所需要的时间.根据高斯核中可变参数的调整,可以实现一定程度上对约简后属性数量的控制,以确保分类的精度.实验结果表明,基于粒子群算法的高斯核模糊粗糙集属性约简算法有较好的约简性能和约简效率.  相似文献   

15.
为了进一步提高粒子群算法的性能,提出了一种新的群体智能优化算法——带高斯扰动和协同寻优的蝙蝠粒子群混合算法。该混合算法利用蝙蝠个体脉冲的回声定位对最优粒子gbest进行高斯扰动而产生一个局部解,把该局部解加到蝙蝠种群中,然后根据局部解的位置优劣与蝙蝠个体产生的响度来更新粒子群。在寻优过程中,对gbest进行高斯扰动增加了种群的多样性而避免粒子群过快陷入局部最优,并且加强了蝙蝠种群与粒子群的信息交互,协同寻优。与蝙蝠算法、标准粒子群算法、烟花算法、带高斯扰动的粒子群算法、粒子群差分算法相比,带高斯扰动和协同寻优的蝙蝠粒子群混合算法的总体性能优于其他5种算法。  相似文献   

16.
在传统缩短方案的基础上,提出一种基于高斯近似辅助筛选凿孔位的缩短算法,可方便得到速率兼容的缩短凿孔极化码(RCSPP)。该算法分为三阶段:(1)根据实际传输长度M构造码长为N的Polar母码;(2)在生成矩阵中结合高斯近似信息及|Q(N_p)|最小化原则依次选出(N-M)个凿孔位,并将其对应列号添加入凿孔向量N_p中得到补充冻结集;(3)译码时,将凿孔向量中传输冻结比特的对数似然比(LLR)接收值设置为无穷大(或无穷小)值。仿真结果表明:在误比特率(BER)为10~(-5)时,本文算法与传统的缩短方案及准均匀凿孔(QUP)方案相比,分别能获得0. 1 dB及0. 3 dB的性能增益。  相似文献   

17.
目的 解决粒子群算法易陷入局部最优解、出现早熟收敛从而导致求解精度不高的缺陷.方法 将高斯变异(Gaussian M utation)、Levy飞行策略与基本粒子群优化算法(PSO)进行混合,提出一种称为GLPSO混合粒子群算法.在该算法中粒子通过Levy飞行更新自己的位置,若粒子在若干次迭代后无法产生更优值,则在保存当前最优值的前提下进行高斯变异来保持种群多样性.结果 与结论通过对基准测试函数优化的实验结果对比,GLPSO在5个基准测试函数中的优化精度和全局搜索能力优于其他对比算法,GLPSO有更加出色的全局搜索能力和更高的求解精度.  相似文献   

18.
针对粒子滤波在盲多用户检测中计算复杂的问题,构建了一种低复杂度的辅助粒子滤波盲多用户检测快速算法.在同步快变平衰落信道下,该算法对超过门限数目的粒子进行分类,并以匹配滤波检测器的检测值作为相应类别粒子权系数的加速依据,以不同类别粒子的概率差闽值及匹配滤波检测器的检测值作为粒子滤波所需粒子数目是否足够的判断准则,自动调节不同情况下所需的粒子数目,通过降低粒子数目来降低粒子滤波盲多用户检测算法的计算复杂度.仿真结果表明,辅助粒子滤波快速算法在多用户检测性能上可与原粒子滤波算法相比拟,且计算量可降低30%~40%.  相似文献   

19.
模型集自适应的交互多模型辅助粒子滤波算法   总被引:1,自引:0,他引:1  
为了提高机动目标的跟踪精度,提出一种基于目标转弯率模型的模型集自适应交互多模型辅助粒子滤波算法(AMSIMMAPF).采用转弯率模型实时辨识目标的角速度,根据辨识到的角速度来更新交互多模型的模型集.利用辅助粒子滤波可以避免粒子权值退化、样本衰减,不受线性模型高斯噪声限制的特点,各模型滤波选用辅助粒子滤波算法以提高跟踪精度.理论分析和仿真结果表明,与交互多模型粒子滤波算法相比,本算法具有跟踪精度高,计算量小的特点.  相似文献   

20.
为克服多Agent系统的非线性问题,提高多Agent系统对信息的协同合作能力,提出一种改进的辅助粒子信息融合滤波算法。该算法通过分析多Agent系统的结构,根据正交小波多尺度分析理论对系统内Agent的信息进行分解、重构,给出以Agent信息为重要采样密度函数的辅助粒子滤波算法,并对滤波结果进行特征融合,得到多Agent系统融合特征。将此算法应用到机动目标跟踪领域,并与传统的滤波算法进行对比,仿真结果验证了该算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号