首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Casali A  Struhl G 《Nature》2004,431(7004):76-80
Morphogens are 'form-generating' substances that spread from localized sites of production and specify distinct cellular outcomes at different concentrations. A cell's perception of morphogen concentration is thought to be determined by the number of active receptors, with inactive receptors making little if any contribution. Patched (Ptc), the receptor for the morphogen Hedgehog (Hh), is active in the absence of ligand and blocks the expression of target genes by inhibiting Smoothened (Smo), an essential transducer of the Hh signal. Hh binding to Ptc abrogates the ability of Ptc to inhibit Smo, thereby unleashing Smo activity and inducing target gene expression. Here, we show that a cell's measure of ambient Hh concentration is not determined solely by the number of active (unliganded) Ptc molecules. Instead, we find that Hh-bound Ptc can titrate the inhibitory action of unbound Ptc. Furthermore, we demonstrate that this effect is sufficient to allow normal reading of the Hh gradient in the presence of a form of Ptc that cannot bind the ligand but retains its ability to inhibit Smo. These results support a model in which the ratio of bound to unbound Ptc molecules determines the cellular response to Hh.  相似文献   

2.
3.
Corbit KC  Aanstad P  Singla V  Norman AR  Stainier DY  Reiter JF 《Nature》2005,437(7061):1018-1021
The unanticipated involvement of several intraflagellar transport proteins in the mammalian Hedgehog (Hh) pathway has hinted at a functional connection between cilia and Hh signal transduction. Here we show that mammalian Smoothened (Smo), a seven-transmembrane protein essential for Hh signalling, is expressed on the primary cilium. This ciliary expression is regulated by Hh pathway activity; Sonic hedgehog or activating mutations in Smo promote ciliary localization, whereas the Smo antagonist cyclopamine inhibits ciliary localization. The translocation of Smo to primary cilia depends upon a conserved hydrophobic and basic residue sequence homologous to a domain previously shown to be required for the ciliary localization of seven-transmembrane proteins in Caenorhabditis elegans. Mutation of this domain not only prevents ciliary localization but also eliminates Smo activity both in cultured cells and in zebrafish embryos. Thus, Hh-dependent translocation to cilia is essential for Smo activity, suggesting that Smo acts at the primary cilium.  相似文献   

4.
Jia J  Tong C  Wang B  Luo L  Jiang J 《Nature》2004,432(7020):1045-1050
The Hedgehog (Hh) family of secreted proteins governs cell growth and patterning in animal development. The Hh signal is transduced by the seven-transmembrane protein Smoothened (Smo); however, the mechanism by which Smo is regulated remains largely unknown. Here we show that protein kinase A (PKA) and casein kinase I (CKI) regulate Smo cell-surface accumulation and activity in response to Hh. Blocking PKA or CKI activity in the Drosophila wing disc prevents Hh-induced Smo accumulation and attenuates pathway activity, whereas increasing PKA activity promotes Smo accumulation and pathway activation. We show that PKA and CKI phosphorylate Smo at several sites, and that phosphorylation-deficient forms of Smo fail to accumulate on the cell surface and are unable to transduce the Hh signal. Conversely, phosphorylation-mimicking Smo variants show constitutive cell-surface expression and signalling activity. Furthermore, we find that the levels of Smo cell-surface expression and activity correlate with its levels of phosphorylation. Our data indicate that Hh induces progressive Smo phosphorylation by PKA and CKI, leading to elevation of Smo cell-surface levels and signalling activity.  相似文献   

5.
McLellan JS  Zheng X  Hauk G  Ghirlando R  Beachy PA  Leahy DJ 《Nature》2008,455(7215):979-983
Hedgehog (Hh) proteins specify tissue pattern in metazoan embryos by forming gradients that emanate from discrete sites of expression and elicit concentration-dependent cellular differentiation or proliferation responses. Cellular responses to Hh and the movement of Hh through tissues are both precisely regulated, and abnormal Hh signalling has been implicated in human birth defects and cancer. Hh signalling is mediated by its amino-terminal domain (HhN), which is dually lipidated and secreted as part of a multivalent lipoprotein particle. Reception of the HhN signal is modulated by several cell-surface proteins on responding cells, including Patched (Ptc), Smoothened (Smo), Ihog (known as CDO or CDON in mammals) and the vertebrate-specific proteins Hip (also known as Hhip) and Gas1 (ref. 11). Drosophila Ihog and its vertebrate homologues CDO and BOC contain multiple immunoglobulin and fibronectin type III (FNIII) repeats, and the first FNIII repeat of Ihog binds Drosophila HhN in a heparin-dependent manner. Surprisingly, pull-down experiments suggest that a mammalian Sonic hedgehog N-terminal domain (ShhN) binds a non-orthologous FNIII repeat of CDO. Here we report biochemical, biophysical and X-ray structural studies of a complex between ShhN and the third FNIII repeat of CDO. We show that the ShhN-CDO interaction is completely unlike the HhN-Ihog interaction and requires calcium, which binds at a previously undetected site on ShhN. This site is conserved in nearly all Hh proteins and is a hotspot for mediating interactions between ShhN and CDO, Ptc, Hip and Gas1. Mutations in vertebrate Hh proteins causing holoprosencephaly and brachydactyly type A1 map to this calcium-binding site and disrupt interactions with these partners.  相似文献   

6.
Taipale J  Chen JK  Cooper MK  Wang B  Mann RK  Milenkovic L  Scott MP  Beachy PA 《Nature》2000,406(6799):1005-1009
Basal cell carcinoma, medulloblastoma, rhabdomyosarcoma and other human tumours are associated with mutations that activate the proto-oncogene Smoothened (SMO) or that inactivate the tumour suppressor Patched (PTCH). Smoothened and Patched mediate the cellular response to the Hedgehog (Hh) secreted protein signal, and oncogenic mutations affecting these proteins cause excess activity of the Hh response pathway. Here we show that the plant-derived teratogen cyclopamine, which inhibits the Hh response, is a potential 'mechanism-based' therapeutic agent for treatment of these tumours. We show that cyclopamine or synthetic derivatives with improved potency block activation of the Hh response pathway and abnormal cell growth associated with both types of oncogenic mutation. Our results also indicate that cyclopamine may act by influencing the balance between active and inactive forms of Smoothened.  相似文献   

7.
Ligand-dependent activation of the hedgehog (Hh) signalling pathway has been associated with tumorigenesis in a number of human tissues. Here we show that, although previous reports have described a cell-autonomous role for Hh signalling in these tumours, Hh ligands fail to activate signalling in tumour epithelial cells. In contrast, our data support ligand-dependent activation of the Hh pathway in the stromal microenvironment. Specific inhibition of Hh signalling using small molecule inhibitors, a neutralizing anti-Hh antibody or genetic deletion of smoothened (Smo) in the mouse stroma results in growth inhibition in xenograft tumour models. Taken together, these studies demonstrate a paracrine requirement for Hh ligand signalling in the tumorigenesis of Hh-expressing cancers and have important implications for the development of Hh pathway antagonists in cancer.  相似文献   

8.
Jia J  Amanai K  Wang G  Tang J  Wang B  Jiang J 《Nature》2002,416(6880):548-552
The Drosophila protein Shaggy (Sgg, also known as Zeste-white3, Zw3) and its vertebrate orthologue glycogen synthase kinase 3 (GSK3) are inhibitory components of the Wingless (Wg) and Wnt pathways. Here we show that Sgg is also a negative regulator in the Hedgehog (Hh) pathway. In Drosophila, Hh acts both by blocking the proteolytic processing of full-length Cubitus interruptus, Ci (Ci155), to generate a truncated repressor form (Ci75), and by stimulating the activity of accumulated Ci155 (refs 2-6). Loss of sgg gene function results in a cell-autonomous accumulation of high levels of Ci155 and the ectopic expression of Hh-responsive genes including decapentaplegic (dpp) and wg. Simultaneous removal of sgg and Suppressor of fused, Su(fu), results in wing duplications similar to those caused by ectopic Hh signalling. Ci is phosphorylated by GSK3 after a primed phosphorylation by protein kinase A (PKA), and mutating GSK3-phosphorylation sites in Ci blocks its processing and prevents the production of the repressor form. We propose that Sgg/GSK3 acts in conjunction with PKA to cause hyperphosphorylation of Ci, which targets it for proteolytic processing, and that Hh opposes Ci proteolysis by promoting its dephosphorylation.  相似文献   

9.
10.
E Moreno  G Morata 《Nature》1999,400(6747):873-877
The homeobox gene caudal (cad) has a maternal embryonic function that establishes the antero-posterior body axis of Drosophila. It also has a conserved late embryonic and imaginal function related to the development of the posterior body region. Here we report the developmental role of cad in adult Drosophila. It is required for the normal development of the analia structures, which derive from the most posterior body segment. In the absence of cad function, the analia develop like the immediately anterior segment (male genitalia), following the transformation rule of the canonical Hox genes. We also show that cad can induce ectopic analia development if expressed in the head or wing. We propose that cad is the Hox gene that determines the development of the fly's most posterior segment. cad acts in combination with the Hedgehog (Hh) pathway to specify the different components of the analia: the activities of cad and of the Hh pathway induce Distal-less expression that, together with cad, promote external analia development. In the absence of the Hh pathway, cad induces internal analia development, probably by activating the brachyenteron and even-skipped genes.  相似文献   

11.
Chuang PT  McMahon AP 《Nature》1999,397(6720):617-621
  相似文献   

12.
Zeng X  Goetz JA  Suber LM  Scott WJ  Schreiner CM  Robbins DJ 《Nature》2001,411(6838):716-720
The secreted protein Sonic hedgehog (Shh) exerts many of its patterning effects through a combination of short- and long-range signalling. Three distinct mechanisms, which are not necessarily mutually exclusive, have been proposed to account for the long-range effects of Shh: simple diffusion of Shh, a relay mechanism in which Shh activates secondary signals, and direct delivery of Shh through cytoplasmic extensions, termed cytonemes. Although there is much data (using soluble recombinant Shh (ShhN)) to support the simple diffusion model of long-range Shh signalling, there has been little evidence to date for a native form of Shh that is freely diffusible and not membrane-associated. Here we provide evidence for a freely diffusible form of Shh (s-ShhNp) that is cholesterol modified, multimeric and biologically potent. We further demonstrate that the availability of s-ShhNp is regulated by two functional antagonists of the Shh pathway, Patched (Ptc) and Hedgehog-interacting protein (Hip). Finally, we show a gradient of s-ShhNp across the anterior-posterior axis of the chick limb, demonstrating the physiological relevance of s-ShhNp.  相似文献   

13.
Duman-Scheel M  Weng L  Xin S  Du W 《Nature》2002,417(6886):299-304
  相似文献   

14.
Choi JY  Muallem D  Kiselyov K  Lee MG  Thomas PJ  Muallem S 《Nature》2001,410(6824):94-97
Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Initially, Cl- conductance in the sweat duct was discovered to be impaired in CF, a finding that has been extended to all CFTR-expressing cells. Subsequent cloning of the gene showed that CFTR functions as a cyclic-AMP-regulated Cl- channel; and some CF-causing mutations inhibit CFTR Cl- channel activity. The identification of additional CF-causing mutants with normal Cl- channel activity indicates, however, that other CFTR-dependent processes contribute to the disease. Indeed, CFTR regulates other transporters, including Cl(-)-coupled HCO3- transport. Alkaline fluids are secreted by normal tissues, whereas acidic fluids are secreted by mutant CFTR-expressing tissues, indicating the importance of this activity. HCO3- and pH affect mucin viscosity and bacterial binding. We have examined Cl(-)-coupled HCO3- transport by CFTR mutants that retain substantial or normal Cl- channel activity. Here we show that mutants reported to be associated with CF with pancreatic insufficiency do not support HCO3- transport, and those associated with pancreatic sufficiency show reduced HCO3- transport. Our findings demonstrate the importance of HCO3- transport in the function of secretory epithelia and in CF.  相似文献   

15.
Hedgehog signalling in prostate regeneration, neoplasia and metastasis   总被引:1,自引:0,他引:1  
Metastatic cancers adopt certain properties of normal cells in developing or regenerating organs, such as the ability to proliferate and alter tissue organization. We find here that activity of the Hedgehog (Hh) signalling pathway, which has essential roles in developmental patterning, is required for regeneration of prostate epithelium, and that continuous pathway activation transforms prostate progenitor cells and renders them tumorigenic. Elevated pathway activity furthermore distinguishes metastatic from localized prostate cancer, and pathway manipulation can modulate invasiveness and metastasis. Pathway activity is triggered in response to endogenous expression of Hh ligands, and is dependent upon the expression of Smoothened, an essential Hh response component that is not expressed in benign prostate epithelial cells. Monitoring and manipulating Hh pathway activity may thus offer significant improvements in diagnosis and treatment of prostate cancers with metastatic potential.  相似文献   

16.
Structure of a bacterial multidrug ABC transporter   总被引:2,自引:0,他引:2  
Dawson RJ  Locher KP 《Nature》2006,443(7108):180-185
Multidrug transporters of the ABC family facilitate the export of diverse cytotoxic drugs across cell membranes. This is clinically relevant, as tumour cells may become resistant to agents used in chemotherapy. To understand the molecular basis of this process, we have determined the 3.0 A crystal structure of a bacterial ABC transporter (Sav1866) from Staphylococcus aureus. The homodimeric protein consists of 12 transmembrane helices in an arrangement that is consistent with cross-linking studies and electron microscopic imaging of the human multidrug resistance protein MDR1, but critically different from that reported for the bacterial lipid flippase MsbA. The observed, outward-facing conformation reflects the ATP-bound state, with the two nucleotide-binding domains in close contact and the two transmembrane domains forming a central cavity--presumably the drug translocation pathway--that is shielded from the inner leaflet of the lipid bilayer and from the cytoplasm, but exposed to the outer leaflet and the extracellular space.  相似文献   

17.
Channels and transporters of the ClC family cause the transmembrane movement of inorganic anions in service of a variety of biological tasks, from the unusual-the generation of the kilowatt pulses with which electric fish stun their prey-to the quotidian-the acidification of endosomes, vacuoles and lysosomes. The homodimeric architecture of ClC proteins, initially inferred from single-molecule studies of an elasmobranch Cl(-) channel and later confirmed by crystal structures of bacterial Cl(-)/H(+) antiporters, is apparently universal. Moreover, the basic machinery that enables ion movement through these proteins-the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl(-) and H(+) antiport in the transporters-are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However, this evidence is only inferential, and because examples are known in which quaternary rearrangements of extramembrane ClC domains that contribute to dimerization modulate transport activity, we cannot declare as definitive a 'parallel-pathways' picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl(-)/H(+) exchanger, ClC-ec1 from Escherichia coli, to design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not required for Cl(-)/H(+) exchange in ClC transporters.  相似文献   

18.
Membrane co-transport proteins that use a five-helix inverted repeat motif have recently emerged as one of the largest structural classes of secondary active transporters. However, despite many structural advances there is no clear evidence of how ion and substrate transport are coupled. Here we report a comprehensive study of the sodium/galactose transporter from Vibrio parahaemolyticus (vSGLT), consisting of molecular dynamics simulations, biochemical characterization and a new crystal structure of the inward-open conformation at a resolution of 2.7??. Our data show that sodium exit causes a reorientation of transmembrane helix 1 that opens an inner gate required for substrate exit, and also triggers minor rigid-body movements in two sets of transmembrane helical bundles. This cascade of events, initiated by sodium release, ensures proper timing of ion and substrate release. Once set in motion, these molecular changes weaken substrate binding to the transporter and allow galactose readily to enter the intracellular space. Additionally, we identify an allosteric pathway between the sodium-binding sites, the unwound portion of transmembrane helix 1 and the substrate-binding site that is essential in the coupling of co-transport.  相似文献   

19.
Embryonic signalling pathways regulate progenitor cell fates in mammalian epithelial development and cancer. Prompted by the requirement for sonic hedgehog (Shh) signalling in lung development, we investigated a role for this pathway in regeneration and carcinogenesis of airway epithelium. Here we demonstrate extensive activation of the hedgehog (Hh) pathway within the airway epithelium during repair of acute airway injury. This mode of Hh signalling is characterized by the elaboration and reception of the Shh signal within the epithelial compartment, and immediately precedes neuroendocrine differentiation. We reveal a similar pattern of Hh signalling in airway development during normal differentiation of pulmonary neuroendocrine precursor cells, and in a subset of small-cell lung cancer (SCLC), a highly aggressive and frequently lethal human tumour with primitive neuroendocrine features. These tumours maintain their malignant phenotype in vitro and in vivo through ligand-dependent Hh pathway activation. We propose that some types of SCLC might recapitulate a critical, Hh-regulated event in airway epithelial differentiation. This requirement for Hh pathway activation identifies a common lethal malignancy that may respond to pharmacological blockade of the Hh signalling pathway.  相似文献   

20.
Expression of P-glycoprotein, the product of the MDR1 gene, confers multidrug resistance on cell lines and human tumours (reviewed in refs 1,2). P-glycoprotein (relative molecular mass 170,000) is an ATP-dependent, active transporter which pumps hydrophobic drugs out of cells, but its normal physiological role is unknown. It is a member of the ABC (ATP-binding cassette) superfamily of transporters, which includes many bacterial transport systems, the putative peptide transporter from the major histocompatibility locus, and the product of the cystic fibrosis gene (the cystic fibrosis transmembrane regulator, CFTR). CFTR is located in the apical membranes of many secretory epithelia and is associated with a cyclic AMP-regulated chloride channel. At least two other chloride channels are present in epithelial cells, regulated by cell volume and by intracellular Ca2+, respectively. Because of the structural and sequence similarities between P-glycoprotein and CFTR, and because P-glycoprotein is abundant in many secretory epithelia, we examined whether P-glycoprotein might be associated with one or other of these channels. We report here that expression of P-glycoprotein generates volume-regulated, ATP-dependent, chloride-selective channels, with properties similar to channels characterized previously in epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号