共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
高泽图 《海南大学学报(自然科学版)》2005,23(1):9-12
利用Stirling数给出高阶Euler多项式和高阶Bernoulli多项式的一类新的计算公式,这些公式结构精美,便于应用. 相似文献
3.
在文献[1]和[2]中曾定义了广义高阶Bernoulli数和广义高阶Euler数.本文将研究它们之间的一些相互关系并得到了一些相应的特殊情况,从而推广和深化了有关文献[3]-[10]中的相关结果。 相似文献
4.
关于高阶Euler多项式和高阶Bernoulli多项式的计算公式 总被引:2,自引:0,他引:2
刘国栋 《山西大学学报(自然科学版)》1998,21(2):127-131
给出了能简捷地计算出高阶Euler多项式和高阶Bernouli多项式的计算公式 相似文献
5.
6.
本文给出了关于高阶 Bernoulli 及高阶 Euler 多项式的恒等式,作为推论给出了[3][6]等一些结果。 相似文献
7.
得到了高阶Bernoulli多项式B(nk)(x)和高阶Euler多项式E(nk)(x)的一些性质.利用矩阵工具推导出这两类多项式的一个新关系式. 相似文献
8.
高阶Bernoulli数和高阶Euler数的关系 总被引:4,自引:0,他引:4
使用发生函数方法全面讨论了高阶Bernoulli数和高阶Euler数之间的新型关系,这些公式进一步深化和补充了文献[3~5]中的相关结果. 相似文献
9.
用生成函数与组合分析的方法研究高阶Bernoulli多项式、高阶Euler多项式与Stirling数的关系, 给出用Stirling数计算高阶Bernoulli多项式和高阶Euler多项式的公式. 相似文献
10.
11.
讨论了高阶Euler多项式和Euler多项式的关系,推广了张之正、胡廷锋的结果。 相似文献
12.
该文建立了高阶Euler多项式的一个递归关系,给出了包含广义Fibonaci,Lucas序列与高阶Euler多项式的一些恒等式,推广了L.Toscano和P.F.Byrd的结果 相似文献
13.
陈候炎 《山西师范大学学报:自然科学版》2010,24(2):1-5
利用发生函数的方法,研究高阶Genocchi多项式、高阶Bernoulli多项式和高阶Euler多项式之间的关系,并给出了一些新型的恒等式. 相似文献
14.
根据高阶Genocchi多项式、高阶Bernoulli多项式和高阶Euler多项式定义,利用发生函数研究高阶Genoc-chi多项式、高阶Bernoulli多项式和高阶Euler多项式之间的关系,并给出了一些新型恒等式。 相似文献
15.
Cauchy多项式与高阶Cauchy多项式 总被引:1,自引:0,他引:1
高泽图 《海南大学学报(自然科学版)》2006,24(3):217-221
给出了Cauchy多项式与高阶Cauchy多项式及高阶Cauchy数的定义,导出了它们的生成函数,利用第2类Stirling数得到了它们的递推公式,获得它们与高阶Bernou lli多项式、高阶退化Bernou lli多项式的关系式. 相似文献
16.
给出高阶Apostol-Euler多项式与高阶Apostol-Bernoulli多项式的定义,研究各自性质及二者之间的关系,同时利用Stirling数给出这两类多项式的计算公式, 推广了文献[5-6] 的结果. 相似文献
17.
高泽图 《海南大学学报(自然科学版)》2007,25(2):120-124
研究Bernoulli多项式和Euler多项式的Akiyama-Tanigawa算法,利用Stirling数分别给出它们的一类新的封闭计算公式. 相似文献
18.
根据高阶Euler数、高阶Bernoulli数及高阶Genocchi数定义,利用发生函数方法建立起高阶Euler数、高阶Bernoulli数与高阶Genocchi数之间的恒等式,得到这些高阶数分别用其他普通数表示的几组计算公式,推广了已有的相关结果. 相似文献