共查询到18条相似文献,搜索用时 62 毫秒
1.
采用H^1-Galerkin混合有限元方法讨论了伪抛物型积分—微分方程初边值问题的数值模拟及误差分析,在一维情况下得到了未知函数和伴随向量的最优阶的L^2模和H^1模的误差估计;在二维、三维情况下。得到了未知函数的最优阶的L^2模和H^1模的误差估计。 相似文献
2.
利用修正的H1-Galerkin混合有限元方法研究了多维半线性双曲型积分微分方程,得到了半离散解及全离散解的最优收敛阶误差估计,该方法的优点是不需验证LBB相容性条件. 相似文献
3.
运用混合有限元方法研究了一类伪双曲型积分微分方程初边值问题基于Raviart-Thomas空间Vh×Wh的L2,L∞的误差估计.与通常的有限元方法相比,该方法可以同时高精度的逼近未知函数及未知函数的梯度.通过引入广义混合椭圆投影,给出了未知函数u,ut,utt,伴随速度σ和散度divσ逼近解的最优阶L2误差估计,并且还得到了u及σ逼近解的L∞误差估计. 相似文献
4.
抛物型积分微分方程的矩形网格混合体积元方法 总被引:2,自引:1,他引:2
使用矩形元的最低次R-T混合有限元空间,提出了二阶线性抛物型积分微分方程初边值问题的混合体积元格式,证明了该混合体积元格式解的一阶最优L^2模误差估计。 相似文献
5.
王琳 《新乡学院学报(自然科学版)》2013,(3):168-170
利用H 1-Galerkin非协调混合元方法分析了一类半线性抛物方程,在不采用传统的Ritz投影的情况下得到了与协调有限元方法相同的收敛阶. 相似文献
6.
讨论拟线性抛物型积分微分方程的扩展混合有限元方法.并利用该方法得到了其真解与离散解的最优L2模误差估计. 相似文献
7.
扩展混合元方法和H1-Galerkin混合元方法相结合,提出了H1-Galerkin扩展混和元方法,保持了两者的优点,并证明了二阶抛物问题半离散格式解的存在唯一性. 相似文献
8.
采用混合体积元方法求解一类四阶抛物型积分-微分方程的初边值问题,构造了问题的半离散混合体积元格式,得到了误差估计结果。 相似文献
9.
于顺霞 《天津师范大学学报(自然科学版)》2014,(2):9-11,15
研究一类二阶双曲型方程.通过引入空间和时间的一阶导数得到了混合Galerkin变分形式,进而导出方程的H1-Galerkin混合有限元方法的二层全离散格式,其中时间方向采用中心差商离散,得到了未知函数及流量的最优阶误差估计. 相似文献
10.
采用扩展混合元方法处理二阶线性抛物型积分微分方程,通过此混合元方法,可以同时高精度逼近三个变量:未知纯量函数,未知函数的梯度以及流体流量.构造了关于时间为半离散的扩展混合元格式,并进行了详细的理论分析.得到了最优阶的L^2-模误差估计结果. 相似文献
11.
Sobolev方程的H1-Galerkin混合有限元方法 总被引:1,自引:0,他引:1
利用H1-Galerkin混合有限元方法分析了一维线性Sobolev方程,得到了未知函数和它的伴随向量函数有限元解的最优阶误差估计,该方法的优点是不需验证相容性条件即可得到和传统混合有限元方法相同的收敛阶数. 相似文献
12.
王焕清 《三峡大学学报(自然科学版)》2009,31(4):106-108
利用H^1-Galerkin混合有限元方法分析了线性粘弹性方程,得到了未知函数和它的伴随向量函数有限元解的最优阶误差估计,该方法的优点是不需验证LBB相容性条件即可得到和传统混合有限元方法相同的收敛阶数. 相似文献
13.
提出了二阶双曲型方程的H1-Galerkin混合有限元方法的全离散格式,并且得到了未知函数及流量的最优阶误差估计。 相似文献
14.
给出了双曲型积分微分方程的最小二乘混合有限元方法,利用该方法将方程降阶,并对方程进行离散,构造了最小二乘混合有限元格式.最小二乘混合元方法可以避免标准混合元格式中的LBB限制条件,从而可以更灵活地选择有限元空间.误差估计表明在H×H1范数意义下这种方法具有最优收敛阶. 相似文献
15.
《河南师范大学学报(自然科学版)》2017,(1):1-7
针对一类伪双曲方程,建立了其非协调H~1-Galerkin混合有限元逼近格式利用非协调带约束旋转(CNR)Q_1及零阶Raviart-Thomas(R-T)元作为逼近空间对,并借助他们的特殊性质,在半离散格式下得到了原始变量u的broken-H~1模以及流量p=▽u的H(div,Ω)模的O(h~2)阶超逼近估计.同时,构造了一个具有二阶精度的全离散格式,并得到了相关变量的O(h~2+τ~2)阶超逼近结果.最后,给出了数值算例验证理论分析的正确性. 相似文献
16.
研究了一类双曲方程的H1-Galerkin混合有限元方法问题,根据单元的特点,得到了和传统的混合元相同的最优估计以及超收敛结果,并采用插值后处理算子技巧得到了整体超收敛. 相似文献
17.
粘弹性方程是一类重要的数学物理方程,本文应用H1-Galerkin混合有限元方法来研究粘弹性方程和边值问题。首先对一维的粘弹性方程进行研究,给出了半离散H1-Galerkin混合有限元方法的存在唯一性证明。通过引入投影,得到了‖u-uh‖与‖q-qh‖的最优误差估计, 相似文献
18.
本文研究系数与x,t均有关的一维线性抛物方程的H1-Galerkin混合元方法.文中给出了该方法的半离散格式,得到了离散解逼近压力和速度的L2-模和H1-模误差估计,以及时间t的一阶导数的L2-模误差估计. 相似文献