共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
基于平滑A~*算法的移动机器人路径规划 总被引:5,自引:0,他引:5
栅格环境下A*算法规划出的移动机器人路径存在折线多、转折次数多、累计转折角度大等问题.为获得较优路径,提出平滑A*算法.在A*算法规划的路径基础上,遍历路径中的所有节点,当某一节点前后节点连线上无障碍物时,将延长线路的这一中间节点删除,建立平滑A*模型.仿真结果表明,平滑A*算法优于Ant(蚁群),Anyti me D*算法.平滑A*算法路径长度降低约5%,累计转折次数降低约50%,累计转折角度减少30%~60%.平滑A*算法能处理不同栅格规模下、障碍物随机分布的复杂环境下移动机器人路径规划问题. 相似文献
3.
4.
5.
针对传统A~*算法在路径规划中的不足,采用了一种实时性更强的D~*算法,与A~*算法不同的是,D~*算法的OPEN列表中包含了弧长代价递增的RAISE和弧长代价递减的LOWE两种状态类型。将传统A~*算法和D~*算法进行仿真试验对比,试验结果表明,D~*算法缩短了搜索长度和搜索时间且收敛速度快、计算量小。同时,在真实环境下进行了导航试验,结果表明机器人能稳定安全的按照规划路径到达目的点,验证了D~*算法的高效率性。 相似文献
6.
《西安交通大学学报》2017,(11)
针对移动机器人路径规划全局最优、实时避障的需求,提出了一种融合改进A~*算法和动态窗口法的全局动态路径规划方法。首先,基于传统A~*算法,结合Manhattan和Euclidean距离,设计了一种优化的启发搜索函数;然后,利用关键点选取策略,剔除冗余路径点和不必要的转折点;最后,融合动态窗口法,构造了顾及全局最优路径的评价函数,基于该评价函数,应用动态窗口法,进行实时动态路径规划,在保证规划路径全局最优性的基础上,提高了平滑性及路径规划的局部避障能力。实验结果表明:与传统A~*算法相比,所提算法规划的路径更平滑,可实时动态避障,且能输出控制参数,这利于机器人的自动控制;与动态窗口法相比,所提算法能够保证规划路径的全局最优性,路径长度由28.879m缩短为22.285m。该研究对于移动机器人自主导航的应用具有重要的参考价值。 相似文献
7.
为解决复杂环境下,农业机器人路径规划存在的局部路径欠优、收敛速度慢、折点较多的问题。为解决此问题,本文提出一种基于天牛须搜索算法和A*算法相结合的BACA*全局规划方法。首先,基于A*算法,采用曼哈顿距离作为启发函数进行全局规划;其次,通过适当调整步长的天牛须搜索算法对路径进行优化,缩短了路径长度,降低了转折点数量;最后,采用贝塞尔曲线对路径进行圆滑处理,使机器人在现实场景中能平稳前进。仿真结果表明:与传统A*算法相比,该算法的路径更加平滑,折点数更少;与天牛须搜索算法相比,能保证生成路径的效率性、全局最优性。在缩短路径长度和降低累计转折点数量方面验证了所提方法的有效性。 相似文献
8.
基于改进A~*算法的室内移动机器人路径规划 总被引:9,自引:0,他引:9
王殿君 《清华大学学报(自然科学版)》2012,(8):1085-1089
针对移动机器人在室内定位的特点,在结构化环境下,开发了机器人路径规划系统。在阐述了全局地图构建方法基础上,根据移动机器人的实际运行环境采用栅格法构建了环境地图。利用A*算法进行初步路径规划,其不足之处是路径规划数据中包含了所有规划点的坐标,冗余点较多,且移动机器人无法在拐点处调整自身姿态。针对这些不足,提出了能够计算出拐点、旋转方向及旋转最小角度的A*路径规划改进算法并进行了实验。移动机器人定位实验结果表明:利用改进后的A*路径规划算法不仅简化了路径,而且在拐点处移动机器人能够调整自身姿态,可以较好地满足室内移动机器人全自主运动的要求。 相似文献
9.
针对移动机器人路径规划时安全性不高的问题,提出一种路径规划安全A*算法.首先,通过扩展搜索邻域,减小路径转角角度,避免不必要的折角;然后,在启发式函数中引入新的评价指标,增加移动机器人与障碍物的距离.最后,提出安全性指数S,对路径安全性进行量化.通过MATLAB软件进行仿真对比,仿真结果表明:文中算法的路径质量和安全性更佳. 相似文献
10.
11.
针对蚁群算法应用于移动机器人路径规划时存在易于陷入局部最优解、收敛速度慢的问题,提出了一种适用于静态障碍环境下基于改进蚁群算法的移动机器人路径规划方法。该方法改进了节点间的状态转移规则,增加了得到最优路径的概率;自适应调整启发函数,提高了算法的搜索效率;基于狼群法则对信息素进行更新,有效避免了算法陷入局部最优解;动态调整了衰减系数,在后期增加了蚂蚁对最优路径的选择概率,加快了算法的收敛速度。仿真实验表明,与其他算法在相同环境下比较,该改进算法在路径规划结果相同的情况下具有较快的收敛速度;且改进算法在不同复杂程度环境中均得到了最优路径,也表明了该算法的有效性和可靠性。该算法具有良好的寻优能力,可以适用于不同复杂环境中的移动机器人路径规划。 相似文献
12.
In order to improve the adaptability of the quadruped robot in complex environments , a path planning method based on sliding window and variant A * algorithm for quadruped robot is presen-ted .To improve the path planning efficiency and robot security , an incremental A*search algorithm ( IA*) and the A*algorithm having obstacle grids extending ( EA*) are proposed respectively .The IA* algorithm firstly searches an optimal path based on A * algorithm, then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally .In comparison with traditional method solving path planning problem from scratch , the IA* enables the robot to plan path more efficiently .EA* extends the obstacle by means of increasing grid g-value, which makes the route far away from the obstacle and avoids blocking the narrow passage .To navi-gate the robot running smoothly , a quadratic B-spline interpolation is applied to smooth the path . Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA * algorithm. 相似文献
13.
针对蚁群算法存在收敛速度慢,易陷入局部最优的问题,提出了一种将人工势场和对数蚁群算法相融合的新算法.该算法是在蚁群算法的基础上,将势场的影响因素引入到蚁群算法的状态转移概率函数和启发函数中,并通过对数函数模型对蚁群算法的信息素更新策略进行改进,使得路径算法搜索不再具有盲目性,并加快算法的收敛速度.为了验证改进算法的有效... 相似文献
14.
针对在结构化栅格工作环境下,基于蚁群算法的路径规划存在停滞和收敛速度慢的问题,提出了一种基于改进蚁群算法的二维码移动机器人路径规划方法.通过限制蚂蚁的搜索方向,即将机器人置于结构化栅格工作环境下,使其只能在水平和垂直方向上移动,进而提高算法的搜索效率.引入自适应期望函数和启发因子,动态调整状态转移概率,避免算法陷入停滞状态,提高算法的收敛速度.针对机器人在转弯过程中耗费时间较长的问题,通过引入转弯影响因子得到扩展路径长度,进而根据扩展路径长度选取最优路径.实验结果表明,提出的方法可以为二维码移动机器人规划出最优路径. 相似文献
15.
基于改进双向RRT算法的机器人路径规划 《山东科学》2021,34(3):109-118
针对双向快速搜索随机树(BI-RRT)算法在路径规划中存在目标导向性差、收敛速度慢、路径拐点多的问题,提出了一种改进BI-RRT算法。通过目标导向引导随机树更快朝向目标点生长,提高收敛速度。引入贪婪路径优化策略,有效减少路径拐点,提高了路径规划算法的效率。同时提出了一种圆盘碰撞检测的算法,并在多个场景中用Matlab平台进行了圆盘移动机器人的路径规划仿真实验,实验结果验证了所提出算法的可行性和有效性。 相似文献
16.
基于两点法的机器人路径规划 总被引:2,自引:0,他引:2
采用超声波传感器检测环境,来提供障碍物和目标的距离信息,避免全局建模,并提出了一种机器人路径规划的新算法——两点法,此算法采用局部路径规划,简单易行,规划速度快,可避免传统算法中存在的死锁现象,最后应用该方法进行了避障、道路跟踪等仿真与模拟实验,实验表明,该算法具有很好的灵活性和鲁棒性。 相似文献
17.
机器人路径规划问题通常采用不同算法来对其进行规划,为发挥算法中改进遗传算法和鲸鱼优化法的优势,弥补遗传算法出现优化准确率和收敛度不高等问题,将改进遗传算法和鲸鱼优化法融合,增强移动机器人路径规划对动态环境的适应性能。对算法适应度函数进行优化,改善了基本遗传算法、提升了原算法对函数的求解效率。通过遗传算法、对遗传算法进行改进的算法、改进遗传算法与鲸鱼算法相融合的算法所运行的路径长度与运行时间进行比较,结果表明融合改进优化算法可以有效获取最优算子,减少运算时的迭代次数,同时提升算法的规划准确率。 相似文献
18.
基于自适应模糊神经网络的机器人路径规划方法 总被引:1,自引:0,他引:1
为了解决传统反应式导航中的复杂陷阱问题,优化导航控制,减少计算复杂度,提出了基于自适应模糊神经网络的机器人导航控制及改进型虚目标路径规划方法.首先根据移动机器人运动学模型,融合神经网络的自主学习功能与模糊控制的模糊推理能力,提出了基于自适应模糊神经网络的机器人导航控制器,将生成的Takagi-Sugeno型模糊推理系统作为机器人局部反应控制的参考模型.该自适应模糊神经网络控制器实时输出扰动角度,在线调整移动机器人的预瞄准方向,使移动机器人能够无碰撞趋向目标.然后,提出了一种改进型虚目标方法,优先选择机器人可能逃脱陷阱状态的路径,简化了设计难度,改变了虚目标切换方式,避免了大量复杂计算.实验结果表明,提出的方法可以帮助机器人在全局信息未知的复杂环境中导航,在趋近目标点的过程中能有效避障,无冗余路径产生,且轨迹平滑. 相似文献
19.
邓学强 《淄博学院学报(自然科学与工程版)》2014,(1):38-41
在移动机器人路径规划任务中,针对传统人工势场法中存在的目标不可达问题,提出了一种新的斥力改进函数的设计方法。在原来的斥力函数中加入一个调节因子,并对障碍物的作用范围采用人为分段的方式,有效解决了目标不可达问题,使机器人能够顺利到达目标点。将改进后的人工势场法应用于移动机器人路径规划,并利用M atlab软件进行了仿真实验。实验结果表明,基于改进人工势场法的移动机器人路径规划算法简单、有效。 相似文献