首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the toughness of silk fibroin( SF) films,poly( ethylene glycol-glycerin)( PEGG) was synthesized with ethylene glycol and epichlorohydrin. The SF / PEGG blend films were prepared by casting aqueous solution and their structures were characterized. The PEGG was in liquid state at room temperature so it will not be a single phrase at blend film. It crosslinked with SF and made it insolubility in water. The results of X-ray diffraction( XRD) indicated that the crystallinity of the SF in the blend films decreased with the content of PEGG increasing. The tensile strength and elongation at break of blend films were measured using an instron tensile tester. The results showed that the tensile strength and elongation at break of blend films were high enough for application.After the blend films were stored at room temperature for 100 d,the crystallinity, the tensile strength and elongation at wet state increased. The blend films are superior to SF films in providing excellent flexibility and mechanical properties in both dry and wet states. Based on the fact that SF has good biocompatibility,the SF /PEGG blend film will offer new options in many different biomedical applications.  相似文献   

2.
Disc-electrospinning using a disc as spinneret and a rotary drum as collector is a novel technology to prepare nanofiber which has been applied in tissue engineering scaffolds. In this study, nanofibrous mats with mlcro-patterned structure were fabricated via disc-electrospinning. Poly (ε-eaprolactone) (PCL) was dissolved in trifluoroethanol (TFE) at various concentrations ( 2 %-7 % ) (w/v) for electrospinning and the applied voltage ranged from 40 to 70 kV. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibrous scaffolds. SEM images illustrated that the nanofibers with beads formed micro-patterned structure such as triangles and other polygons. The average diameter of nanofibers presented various size with the concentration increased from 2% to 7%. The beads on the nanofibers constructed the vertexes of the polygons, while nanofibers bridged between adjacent vertexes. The concentration of solution and applied voltage may be two dominant factors to influence the topological structure of the nanofibrons scaffolds. Cells cultured on the micro-patterned scaffold spread along the edges of the polygons. The scaffold with patterned structure may have a promising application in tissue engineering.  相似文献   

3.
Silk fibroin/cellulose blend films were prepared using Nmethylmorpholine-N-oxide (NMMO) as solvent. The effects of different proportions and solid contents on properties of blend films were discussed. The mechanical properties showed that the blend films had preferable moisture permeability and a high strength. The structures of the blend films were investigated by infrared spectrum and X-ray diffraction. The results indicated the occurrence of hydrogen bonds between hydroxyl groups of cellulose and amido groups of fibroin.  相似文献   

4.
Nano-hydroxyapatite/poly( ε-caprolactone)( n HA/PCL)composite materials are among the best candidates for application in bone tissue engineering. As the main technique to fabricate porous scaffolds, electrospinning produce scaffolds with unsatisfactory mechanical strength and limited pore size for cell infiltration.Micron-sized fiber assembly with higher mechanical strength is qualified to structure hybrid scaffolds. In this study, n HA/PCL monofilament fibers with different mass ratios were fabricated through melt-spinning. Transmission electron microscope( TEM)was used to observe the aggregation between n HA particles. Other characterizations including scanning electron microscopy( SEM),attenuated total reflection Fourier transform infrared spectroscopy( ATR-FTIR) and X-ray diffraction( XRD) were done to discuss the morphology, components and crystallization of the n HA/PCL composite fibers, respectively. The influence of n HA/PCL mass ratio on the tensile properties and water contact angle of composite fibers was also studied. The SEM images show the homogeneous dispersion of nano particles in the polymer matrix. Besides,n HA content increases the tensile strength, initial modulus and hydrophilicity of the composite fibers under the premise of spinnability. This kind of fibers is strong enough to fabricate fiber assembly which may have potential application in bone tissue engineering.  相似文献   

5.
Hydrogel has emerged as an excellent carrier platform for smart drug delivery and effective cancer treatment due to its high water content, good biocompatibility and sufficient mechanical properties. In this work,the DOX-loaded polyvinyl alcohol( PVA)hydrogel was prepared by freeze-thawing technique. The swelling test and the mechanical properties of the pure PVA hydrogels were performed. In addition, the in vitro drug release profiles were examined and the in vitro antitumor efficiency against He La cells was also estimated. The results indicated that the resulting PVA hydrogels contained significant amounts of water and possessed good mechanical properties,and DOX-loaded PVA hydrogel exhibited a sustained and p H-responsive DOX release. The MTT assays also demonstrated that the released DOX could effectively inhibit the proliferation of He La cells. Thus,the cross-linked PVA hydrogel can be further developed as a promising platform for cancer therapy.  相似文献   

6.
The Assembly of one-dimensional (1D) nano- structures such as nanowires/nanorods/nanotubes into two- dimensional (2D) macrostructured films is attracting considerable research interest because of their unique properties and wide applications. In this study, flexible membranes were successfully fabricated using α-MnO2 nanowires synthesized through a hydrothermal method. The effects of thickness and post-annealing temperature on the mechanical properties of the membranes were investigated in detail. Nano-indentation measurements showed that the modulus of the as-prepared 11.75 μm-thick membrane reached 5.765 GPa, and the modulus increased with the increasing post-annealing temperature. Thus, the fabricated membranes with superior mechanical strength can have potential applications such as in photocatalysis, filtering, and supporting substrates.  相似文献   

7.
Electrospun aligned ultrafine fibers of poly( lactide-coglycolide)( PLGA) can be used to construct biomimetic scaffolds for engineering those structurally anisotropic and dense tissues( e. g.,tendon,ligament,etc.). But the acidic degradation products of the PLGA could result in p H decrease in the vicinity of the scaffolds,which may give rise to biocompatibility concerns. To address the noted problem, this study was designed to evaluate the p Hcompensation capacity of using Lysine( Lys) —a kind of basic amino acid on the acidic degradation products of PLGA. Ultrafine PLGA( 50∶ 50) fibers with 0,10%,20%,and 30% by weight of Lys loadings were prepared by a stable jet electrospinning( SJES)approach. The morphology,structure,and mechanical properties of the electrospun aligned fibrous mats of Lys-incorporated PLGA( 50∶50) were characterized by scanning electron microscope( SEM),Fourier transform infrared spectroscopy( FTIR),and tensile testing,respectively. Thereafter,the fibrous PLGA( 50 ∶50) scaffolds were subjected to degradation by being immersed in phosphate buffered saline( PBS,p H 6. 86) solution at 37 ℃ for 5weeks. Our results show that the formed Lys / PLGA composite ultrafine fibers have a well-aligned and uniform morphology with a fineness of ca. 1 #m in diameter. Introduction of Lys led to increased mechanical performance; that is,when the Lys loading is less than 30%,tensile strength and Young's modulus of the aligned Lys / PLGA fibers reached up to the impressive values of 84. 5 MPa and 2. 4 GPa,respectively. Degradation results show that the p H of the PLGA group fell to 5. 6 in 5 weeks while the p H of the Lys /PLGA groups with 10%,20%, and 30% of Lys loadings was maintained at 6. 3, 6. 5 and 6. 7, respectively. This work demonstrated that incorporation of Lys into electrospun PLGA fibers could be an effective approach in mediating the p H decrease caused by the acidic degradation products of the PLGA.  相似文献   

8.
Silk fibroin is becoming a promising biomate-rial because of its excellent biocompatibility. However, theregenerated fibroin is usually soluble in water and its me-chanical properties should be improved. Although manymethods, such as adding other polymers or treating withmethanol, can ameliorate the mechanical properties andinsolubility, the biocompatibility of fibroin is usually dam-aged in these processes. In this article, it is first reported thatthe insoluble fibroin films are directly prepared withoutmethanol treatment. According to the results of Fouriertransform infrared spectroscope (FTIR) and the X-ray dif-fraction (XRD), the amount of IS-sheet conformation in-creased with the increasing of concentration. When fibroinfilms are dried from 15 wt% at 60℃, the films become in-soluble in water. More importantly, The tensile strength andelongation of the insoluble fibroin films dried from 15% so-lution at 60℃ reached 15.9 MPa and 49.4% respectively in the wet state, which is distinctly superior to the fibroin films treated with methanol.  相似文献   

9.
For certain industrial applications, the mechanical properties of PET fiber can be deteriorated from hydrolysis because the terminal carboxylic groups promote the degradation of macromolecules under high moisture and high temperature. It limits the wide applications of PET fiber in some special cases. In this paper, three additives are selected to improve the hydrolytic stability through the reaction of bi-functional groups on additive molecules with carboxyl groups on PET molecules. The additives can serve not only as hydrolysis stabilizers, but also as agents to increase the molecular weight and consequently to improve PET fiber mechanical properties. PET pellets were blended with additive before spinning, and melt spun into fiber. The fibers were then hydrolyzed in an autoclave by saturated vapor at 140℃ for a period of time. Measurements of intrinsic viscosity, terminal carboxylic group value and strength of polyester fibers were carried out to study the effects of hydrolysis resistance. Results show that 2, 2'-bis (2-oxazoline) has best hydrolysis-resistibility and the chainextension effect at the same time.  相似文献   

10.
The influence of mica particles on the rheological and thermal properties of poly( lactic acid)( PLA) / mica composites were investigated by capillary rheometer and thermogravimetric( TG)analysis. The results show that the PLA / mica blends are nonNewtonian pseudoplastic and display shear-thinning. The value of non-Newtonian index of the blends melt decreased obviously with the addition of mica particles but somehow even increased when shear rate exceeded 4 500 s- 1. In this work,it could be indicated that appropriate amount of mica particles could somehow enhance the resistance of PLA melt under high shear rate to deviate from Newtonian fluid. TG analysis shows that the thermal stability of PLA decreases a little after the incorporation of the mica particles.As mica particles decompose in a completely different way in contrast to PLA,this abnormal decrease of thermal stability of PLA / mica composite may be attributed to moisture stored between mica layers released at high temperature.  相似文献   

11.
Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing.  相似文献   

12.
A new entire biodegradable scaffold has been developed which does not require precelluiarization before transplantation. This new kind of vascular scaffold prototype made from porous poly- e-caprolactone (PCL) membrane to provide three-dimensional environment for cell growth, and embedded with weft-knitted polylactic acid (PLA) fabric to support mechanics. The aim of this paper is to study the variation tendency of mechanical properties with the fabric spacing changing. The basic geometrical parameters were measured to characterize properties of the samples. The tensile and compressive elastic recovery of the samples were tested by the universal mechanical tester and radial compression apparatus, respectively. Both tensile and compressive properties enhanced when reducing the fabric spacing of the composite vascular scaffold.  相似文献   

13.
The deposition process of hydrogenated diamond-like carbon (DLC) film greatly affects its frictional properties. In this study, CH3 radicals are selected as source species to deposit hydrogenated DLC films for molecular dynamics simulation. The growth and structural properties of hydrogenated DLC films are investigated and elucidated in detail. By comparison and statistical analysis, the authors find that the ratio of carbon to hydrogen in the films generally shows a monotonously increasing trend with the increase of impact energy. Carbon atoms are more reactive during deposition and more liable to bond with substrate atoms than hydrogen atoms. In addition, there exists a peak value of the number of hydrogen atoms deposited in hydrogenated DLC films. The trends of the variation are opposite on the two sides of this peak point, and it becomes stable when impact energy is greater than 80 eV. The average relative density also indicates a rising trend along with the increment of impact energy, while it does not reach the saturation value until impact energy comes to 50 eV. The hydrogen content in source species is a key factor to determine the hydrogen content in hydrogenated DLC films. When the hydrogen content in source species is high, the hydrogen content in hydrogenated DLC films is accordingly high.  相似文献   

14.
Ultrathin films composed of diazoresin(DR)and polyacrylic acid(PAA)were fabricated.The surface morphology of the films in water was measured using an atomic force microscopy(AFM).The self-assembly technique makes the surface rather flat and uniform.The friction force and its dependence on the velocity differ from the surface charge of the thin films.The friction force of repulsive DR/PAA film increases linearly with velocity and has lower values than that of attractive DR film over the full range of velocity.As the velocity increases,the attractive friction of DR film first decreases to a minimum at a velocity of 2 line/s and then increases all the way.When the surface is repulsive to the friction substrate,the friction of thin films that is determined by hydrated lubrication of polymer chains that is ultralubricated;when it is adhesive to the friction substrate,the friction is mainly contributed from the elastic deformation of adsorbed polymer chains in the low velocity region and from viscous sliding in the presence of hydrated-layer lubrication of the polymer chains in the higher velocity region.  相似文献   

15.
Large advancement has been made in understanding the nucleation and growth of chemical vapor deposition (CVD) diamond, but the adhesion of CVD diamond to substrates is poor and there is no good method for quantitative evaluation of the adhesive strength. The blister test is a potentially powerful tool for characterizing the mechanical properties of diamond films. In this test, pressure was applied on a thin membrane and the out-of-plane deflection of the membrane center was measured. The Young's modulus, residual stress, and adhesive strength were simultaneously determined using the load-deflection behavior of a membrane. The free-standing window sample of diamond thin films was fabricated by means of photolithography and anisotropic wet etching. The research indicates that the adhesive strength of diamond thin films is 4.28±0.37 J/m2. This method uses a simple apparatus, and the fabrication of samples is very easy.  相似文献   

16.
Surface-modified poly(butadiene)urethane (PBTU) films with silk fibroin (SF) were prepared by simple chemical method under the normal temperature. The physical properties and biological behaviour of the SF-modified PBTU film were evaluated. The results showed that the SF-modified PBTU films kept the tenacity and pliability very well, and could overcome rigid and brittle weaks of silk fibroin films. The morphology of SF in the PBTU film was dendritic aggregations, and the water-contact angle measurement indicated that the surface hydrophilicity of modified films was apparently enhanced. The biocompatibility of PBTU films was improved due to the change of surface components. The degree of platelet adhesion and the cell viability of rat embryo dermal fibroblasts seeded on PBTU films, SF films, and SF-modified PBTU films were measured by counting platelets before and after they contacted the films and MTT assay, respectively. The results indicated that platelet adhesion resistance and cell viability on the modified film were greatly superior to those on the PBTU film and the compound interface had good stability in the air.  相似文献   

17.
Poly(e-caprolactone)(PCL)is widely adopted as an ingredient for tissue engineering scaffolds.To improve its cell affinity,in this study,we developed a new method to introduce bioactive RGD peptides onto the surface of PCL via condensation reaction between 2-cyanobenzothiazole(CBT)and D-cysteine.The PCL fibrous membranes were prepared by electrospinning,and RGD functionalization was characterized by fluorescence microscopy,scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS)and water contact angle(WCA).As expected,our results demonstrated the successful RGD immobilization on the surface of PCL.RGD modification improved the hydrophilicity of PCL,changing their WCA from 112.20°to38.35°.Cell adhesion,spreading and proliferation of 3T3fibroblasts were also enhanced.We therefore believe that the methods reported in this study was facile and effective for functional modification of the hydrophobic PCL scaffolds.The moderate reaction conditions are also suitable for covalent immobilization of bioactive molecules onto PCL.  相似文献   

18.
Electrospinning technique was used for the fabrication of poly ( vinyl alcohol ) ( PVA ) / regenerated silk fibrnin ( SF ) composite nanofibers, loaded with ciprofloxacin HCI (CipHCI) as a wound dressing. Electrospun PVA/SF/CipHCI composite nanofibers were stabilized against dissolving in water by heating in an oven at 155℃ for 5 min. Incorporation of CipHCi into electrospun nanofibers was confirmed by SEM and FT.IR spectra. Further the mechanical properties test illustrated that the addition of CipHCI enhanced the mechanical properties of PVA and PVA/SF nanofibers. The antibacterial activities against Escherichia coU (E. coli ) ( gram-negative ) and Staphylococcus aureus ( S. aureus ) (gram-positive) organisms were evaluated by disk diffusion method; and results suggested that electrospun PVA/CipHCI and PVA/SF/ CipHCI composite nanofibers showed a remarkable antibacterial activity.  相似文献   

19.
Recent years, it has attracted more attentions to increase the porosity and pore size of nanofibrous scaffolds to provide the for the cells to grow into the small-diameter vascular grafts. In this study, a novel bi-layer tubular scaffold with an inner layer and an outer layer was fabricated. The inner layer was random collagen/poly ( L-lactide-co-caprolactone ) I P ( LLA- CL) ] nanofibrous mat fabricated by conventional electrospinning and the outer layer was aligned collagen/P (LLA-CL) nanoyarns prepared by a dynamic liquid dectrospinning method. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical structure. Scanning electron microscopy ( SEM ) was employed to observe the morphology of the layers and the cross- sectioned bi-layer tubular scaffold. A liquid displacement method was employed to measure the porosities of the inner and outer layers. Stress-strain curves were obtained to evaluate the mechanical properties of the two different layers and the bi-layer membrane. The diameters of the nanofibers and the nanoyarns were (480 ± 197 ) nm and ( 19.66 ± 4.05 ) μm, respectively. The outer layer had a significantly higher porosity and a larger pore size than those of the inner layer. Furthermore, the bi-layer membrane showed a good mechanical property which was suitable as small-diameter vascular graft. The results indicated that the bi-layer tubular scaffold had a great potential application in small vascular tissue engineering.  相似文献   

20.
The spatial, temporal, and vertical distributions of polybrominated diphenyl ethers (PBDEs) in water columns from the Zhujiang River Estuary were examined, and the partition behavior of PBDEs between particle and dissolved phases was investigated in the present study. The results show that the distributions of PBDEs concentrations in the water varied with the sampling seasons. The PBDEs concentrations in water samples were lower in May 2005, when the brackish water was dominant in the estuary, than in October 2005, when fresh water from river runoff dominated the estuary. The spatial distribution of PBDEs in October 2005 indicated that the river runoff was the major mode to input PBDEs to the estuary, and the concentration of PBDEs in water might be dissolved organic carbon (DOC) dependence. The spatial and vertical distributions of PBDEs in May 2005 were relatively homogeneous, and SPM was the major factor on controlling the levels of PBDEs in this sampling time. Both DOC and POC could play certain roles in determining the distribution and partition of PBDEs between particle and dissolved phases, but their effects varied with the water properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号