共查询到20条相似文献,搜索用时 19 毫秒
1.
为了提高飞机蒙皮连接强度,采用回填式搅拌摩擦点焊(RFSSW)技术对飞机蒙皮材料2524-T3进行了焊接试验。采用体式显微镜和金相显微镜对接头组织进行观察,通过拉剪试验和拉脱试验对接头进行力学性能测试,对断口进行扫描分析。结果表明:接头成形良好,无明显缺陷,RFSSW接头在热机耦合作用下,焊点形成4个不同显微组织区域;RFSSW接头力学性能普遍高于铆接,焊接接头剪切性能达到7.233 kN,较铆接提高113.4%,焊接接头拉脱性能达到3.172 kN,较铆接提高6.16%;接头断裂呈现为焊核剥离断裂和塞型断裂两种模式,当接头下扎深度较浅,焊点内部搅拌不足时产生焊核剥离断裂,随着套筒下扎深度的增加,塞型断裂由上板塞型断裂转变为下板塞型断裂,拉剪和拉脱焊核剥离断裂均为韧性断裂,塞型断裂均为混合型断裂。通过对回填式搅拌摩擦点焊接头力学性能的分析,为搅拌摩擦点焊代替铆接在航空结构件上的应用提供理论和技术基础。 相似文献
2.
《北京科技大学学报》2021,(3)
This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW), friction stir vibration welding(FSVW), and tungsten inert gas welding(TIG). FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW. The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG. In addition, the weld region grains for FSVW were finer compared with those for FSW.Results also showed that the strength, hardness, and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG. The vibration during FSW enhanced dynamic recrystallization, which led to the development of finer grains.The weld efficiency of FSVW was approximately 81%, whereas those of FSW and TIG were approximately 74% and 67%, respectively. 相似文献
3.
This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding (FSW), friction stir vibration welding (FSVW), and tungsten inert gas welding (TIG). FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW. The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG. In addition, the weld region grains for FSVW were finer compared with those for FSW. Results also showed that the strength, hardness, and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG. The vibration during FSW enhanced dynamic recrystallization, which led to the development of finer grains. The weld efficiency of FSVW was approximately 81%, whereas those of FSW and TIG were approximately 74% and 67%, respectively. 相似文献
4.
A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time. 相似文献
5.
《北京科技大学学报》2021,(1)
In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding.There are two material flow components, i.e., the inward-or outward-directed spiral flow on the horizontal plane and the upward-or downward-directed flow on the vertical plane.In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer.In the refill stage, this is process reversed.As such, there is no obvious vertical plasticized metal flow between adjacent layers.Welding leads to the coarsening of S(Al_2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone.Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone. 相似文献
6.
In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding. There are two material flow components, i.e., the inward- or outward-directed spiral flow on the horizontal plane and the upward- or downward-directed flow on the vertical plane. In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer. In the refill stage, this is process reversed. As such, there is no obvious vertical plasticized metal flow between adjacent layers. Welding leads to the coarsening of S (Al2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone. Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone. 相似文献
7.
针对2mm的6082-T6铝合金薄板进行回填式搅拌摩擦点焊,研究搅拌套的旋转速度及下扎深度对力学性能的影响规律,并对接头的横截面及断口形貌进行观察和分析.结果表明:当采用合适的焊接参数时,回填式搅拌摩擦搭接点焊的接头成形美观.点焊接头剪切强度随着搅拌头转速和下扎深度的增加均呈先增大后减小的趋势,剪切断口的断裂形式为韧性断裂. 相似文献
8.
Hai-feng Zhang Li Zhou Wen-lin Li Gao-hui Li Yi-tang Tang Ning Guo Ji-cai Feng 《矿物冶金与材料学报》2021,28(4):699-709
We used refill friction stir spot welding (RFSSW) to join 2-mm-thick AZ91D-H24 magnesium alloy sheets, and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the joints. A sound joint surface can be obtained using plunge depths of 2.0 and 2.5 mm. Plunge depth was found to significantly affect the height of the hook, with greater plunge depths corresponding to more severe upward bending of the hook, which compromised the tensile-shear properties of the joints. The hardness reached a minimum at the thermo-mechanically affected zone due to the precipitation phases of this zone as it dissolved into the α-matrix during the welding process. The fracture modes of RFSSW joints can be divided into three types: shear fracture, plug fracture, and shear–plug fracture. Of these, the joint with a shear–plug fracture exhibited the best tensile-shear load of 6400 N. 相似文献
9.
5 mm厚7050铝合金搅拌摩擦焊接头在490℃固溶处理1 h,利用光学显微镜观察接头微观组织,研究接头焊核区组织的热稳定性.结果表明:焊核区的热稳定性与焊接参数有关,当以转速200 r/min,焊速20 mm/min的参数焊接后,焊核区组织稳定.而以转速600 r/min,焊速分别40、50 mm/min的参数焊接后,接头焊核区部分晶粒出现异常长大,热-机影响区与焊核区的交界面、焊核区根部是组织不稳定的源头. 相似文献
10.
Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates 下载免费PDF全文
Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated. 相似文献
11.
对3 mm厚的DC04冷轧IF钢板进行搅拌摩擦加工,研究加工区域的微观组织与力学性能. 在旋转速度为950 r· min-1 ,加工速度为60 mm·min-1时,采用加工后强制冷却技术可获得光滑平整且没有缺陷的加工表面. 搅拌摩擦加工后组织显著细化,加工中心的平均显微硬度约为HV 135. 6,是母材硬度的1. 4倍,表面细晶层硬度最高可达到HV 312. 8,细晶层和过渡层的抗拉强度分别比母材的抗拉强度提高50. 9%和47. 6%,加工前后试样的拉伸断口均呈微孔聚合韧性断裂特征. 细晶强化对材料抗拉强度的提高起主要作用. 相似文献
12.
采用搅拌摩擦焊焊接厚度为2.75 mm的2519A铝合金板材。分别研究在空气和水流中冷却对焊接性能和焊缝组织的影响。实验结果表明:在旋转速度为2 700 r/min,焊接速度为60 mm/min条件下,水冷焊接得到美观并无明显缺陷的接头,提高了接头强度,抗拉强度达到340 MPa;在水冷条件下,热影响区的范围变窄,热影响区平均硬度提高,焊核区晶粒粒度比空冷条件下的更加小,硬度几乎呈直线分布;而在空冷条件下,焊核区硬度呈先上升后下降趋势,变化明显,水冷焊核区平均硬度低于空冷条件下平均硬度,这是因为空冷焊接能够提高固溶度并促进随后的时效发生。 相似文献
13.
5083铝合金焊接接头的力学性能是影响产品质量的关键因素之一.设定不同TIG焊工艺,用6012铝合金焊丝对10 mm厚的5083铝合金板进行焊接.焊接试样分为四组,在氩气流量、层间温度相同的情况下,四组试样分别采用五层不同焊接电流、焊速、不填丝自熔或加硼方式的焊接工艺.通过对四组试样进行拉伸实验、断口形貌观察,结合金相组织分析,探究TIG焊工艺对5083铝合金焊接接头力学性能的影响.结果表明:中厚板5083铝合金TIG焊接,采用6012铝合金焊丝,层间温度控制在80 ℃,第五道焊道采用不填丝自熔时,焊接接头的综合力学性能最好. 相似文献
14.
15.
为了避免铝合金焊接接头软化,提升接头力学性能,采用FSW对5A06铝合金进行对接试验,在转速为1 200 r/min、焊速为150 mm/min的条件下,将焊接接头加工成一定尺寸的金相试样和拉伸试样,研究深冷处理时间对5A06铝合金搅拌摩擦焊接头组织和力学性能的影响规律,采用显微组织观察试验、显微硬度试验和拉伸试验等方法,对接头组织和力学性能进行表征与分析。结果表明:深冷处理具有细化晶粒、促进析出相析出的作用,提高了接头力学性能;经过12 h深冷处理后,接头的抗拉强度和伸长率分别达到385.3 MPa和17.2%,与未经深冷处理的接头相比,分别提高了7.4%和23.7%。因此,深冷处理可以有效提升铝合金焊接接头的力学性能,为其更广泛的应用提供了理论基础和技术参考。 相似文献
16.
Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process 下载免费PDF全文
In the present work, the friction stir back extrusion (FSBE) process was used as a novel method for the fabrication of AA6063 aluminum alloy wire. Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), tensile and hardness tests were performed. The FSBE via the rotational speed of 475 r/min resulted in fine equiaxed grains, and the mean grain size decreased from 179.0 μm to 15.5 μm due to the occurrence of dynamic recrystallization (DRX). Heat generated by the FSBE changed the size and volume fraction of the Mg2Si precipitated particles. The minimum particle size and maximum volume fraction obtained in the sample were processed by rotational speeds of 475 and 600 r/min, respectively. The 475-r/min sample had the maximum hardness value due to having the lowest grain size (i.e., 15.5 μm) and the presence of many fine Mg2Si precipitates in the aluminum matrix. With increasing rotational speed up to 600 r/min, the hardness decreased, owing to the growth of both grains and precipitates. The FSBE process with a rotational speed of 475 r/min increased the tensile strength (from 150 to 209 MPa) and ductility (from 21.0% to 30.2%) simultaneously. 相似文献
17.
紫铜的搅拌摩擦焊工艺与接头性能分析 总被引:1,自引:0,他引:1
搅拌摩擦焊是一种新型固相塑性连接方法,它的出现为铜的焊接提供了一种新的工艺.对紫铜的搅拌摩擦焊工艺进行了研究,通过工艺试验,对其焊缝成形、接头组织形态及其力学性能进行了分析.研究结果表明,搅拌摩擦焊接紫铜时应选用搅拌头旋转速度在400~700 r/min,焊接速度为35~60 mm/min;从显微组织角度,由于接头主要发生了动态再结晶,焊接接头没有热力影响区,而是三个区,即焊核区、热影响区、母材区.研究还发现用搅拌摩擦焊得到的铜接头出现了明显的软化现象,接头的机械性能比母材低,但比熔化焊得到的接头性能要高,其平均抗拉强度可达到母材的80%. 相似文献
18.
Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys 下载免费PDF全文
Amir Hossein Baghdadi Zainuddin Sajuri Nor Fazilah Mohamad Selamat Mohd Zaidi Omar Yukio Miyashita Amir Hossein Kokabi 《矿物冶金与材料学报》2019,26(10):1285-1298
Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds (IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17 (γ) and Al3Mg2 (β) at the welding zone with a thickness (< 3.5 µm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint. 相似文献
19.
徐峰 《陕西理工学院学报(自然科学版)》2010,26(3):1-3,8
采用微型储能焊机对厚度为0.2mm的TC4钛合金薄板进行了快速连接,并研究了接头组织形貌及焊接参数对接头力学性能的影响。结果表明:储能焊能够实现TC4钛合金薄板的快速凝固焊接,焊接接头由熔核和熔核向母材过渡的熔合区(线)组成。极短的焊接时间和高的冷却速率,使得熔核凝固过程具有快速凝固特征,熔核中凝固组织得到显著细化。当焊接工艺参数为电压250V、电容6600妒、电极力20N时,接头剪切强度可达601MPa。 相似文献
20.
Microstructure,mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy 下载免费PDF全文
Semih Mahmut Aktarer Dursun Murat Sekban Tevfik Kucukomeroglu Gencaga Purcek 《矿物冶金与材料学报》2019,26(6):722-731
AA 6061 alloy and interstitial-free(IF)steel plates were joined by the friction stir welding(FSW)method,and the microstructure,mechanical properties,and biaxial stretch formability of the friction stir welded(FSWed)parts were investigated.The results indicate that the FSWed parts showed optimum tensile strength during FSW with the 0.4-mm offset position of the tool.The Fe4Al13 intermetallic compound formed in the defect-free intersection of AA 6061 and IF-steel plates during FSW.The hardness of the IF-steel part of the FSWed region increased almost 90%relative to its initial hardness of HV0.2 105.The tensile and yield strengths of FSWed regions were approximately 170 MPa and 145 MPa,respectively.According to the formability tests,the Erichsen Index(EI)of the IF-steel,AA 6061,and the FSWed samples were determined to be 2.9 mm,1.9 mm,and 2.1 mm,respectively.The EI of the FSWed sample was almost the same as that of the AA 6061 alloy.However,it decreased compared with that of the IF-steel.The force at EI(FEI)was approximately 1180 N for the FSWed condition.This value is approximately 70%higher than that of AA 6061 alloy. 相似文献