首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Over the last years it has become evident that the nuclear envelope (NE) is more than a passive membrane barrier that separates the nucleus from the cytoplasm. The NE not only controls the trafficking of macromolecules between the nucleoplasm and the cytosol, but also provides anchoring sites for chromosomes and cytoskeleton to the nuclear periphery. Targeting of chromatin to the NE might actually be part of gene expression regulation in eukaryotes. Mutations in certain NE proteins are associated with a diversity of human diseases, including muscular dystrophy, neuropathy, lipodistrophy, torsion dystonia and the premature aging condition progeria. Despite the importance of the NE for cell division and differentiation, relatively little is known about its biogenesis and its role in human diseases. It is our goal to provide a comprehensive view of the NE and to discuss possible implications of NE-associated changes for gene expression, chromatin organization and signal transduction. Received 8 August 2005; received after revision 13 October 2005; accepted 13 October 2005  相似文献   

2.
3.
Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport   总被引:10,自引:0,他引:10  
From a handful of uncloned genetic loci 6 years ago, great strides have been made in understanding the genetic and molecular aetiology of Bardet-Biedl syndrome (BBS), a rare pleiotropic disorder characterised by a multitude of symptoms, including obesity, retinal degeneration and cystic kidneys. Presently, 11 BBS genes have been cloned, with the likelihood that yet more BBS genes remain undiscovered. In 2003, a major breakthrough was made when it was shown that BBS is likely caused by defects in basal bodies and/or primary cilia. Since then, studies in numerous animal models of BBS have corroborated the initial findings and, in addition, have further refined the specific functions of BBS proteins. These include roles in establishing planar cell polarity (noncanonical Wnt signaling) in mice and zebrafish, modulating intraflagellar transport and lipid homeostasis in worms, and regulating intracellular trafficking and centrosomal functions in zebrafish and human tissue culture cells. From these discoveries, a common theme has emerged, namely that the primary function of BBS proteins may be to mediate and regulate microtubule-based intracellular transport processes. Received 20 April 2006; received after revision 30 May 2006; accepted 15 June 2006  相似文献   

4.
HuR and mRNA stability   总被引:22,自引:2,他引:20  
  相似文献   

5.
6.
Studies in the past years have implicated multispan transmembrane transport molecules of the ATP binding cassette (ABC) transporter family in cellular lipid export processes. The prototypic ABC transporter ABCA1 has recently been demonstrated to act as a major facilitator of cellular cholesterol and phospholipid export. Moreover, the transporter ABCA4 (ABCR) plays a pivotal role in retinaldehyde processing, and ABCA3 has recently implicated in lung surfactant processing. These pioneering observations have directed considerable attention to the A subfamily of ABC proteins. ABCA2 is the codefining member of the ABC A-transporter subclass. Although known for some time, it was not until recently that its complete molecular structure was established. Unlike other ABC A-subfamily members, ABCA2 is predominantly expressed in the brain and neural tissues. The unique expression profile together with available structural data suggest roles for this largest known ABC protein in neural transmembrane lipid export. Received 31 January 2002; received after revision 11 March 2002; accepted 11 March 2002  相似文献   

7.
The three isoforms of the adaptor protein Shc play diverse roles in cell signalling. For example, the observation of p46 Shc in the nuclei of hepatocellular carcinoma cells suggests a function quite distinct from the better characterised cytoplasmic role. Ligands responsible for the transport of various Shc isoforms into organelles such as the nucleus have yet to be reported. To identify such ligands a far western approach was used to determine the p52 Shc interactome. The Ran-GTPase nuclear transport protein was identified and found to bind to p52 Shc in vitro with low micromolar affinity. Co-immunoprecipitation, pull down and fluorescence lifetime imaging microscopy experiments in stable cells confirmed cellular interaction and nuclear localisation. The nuclear transport factor protein NTF2, which functions in cohort with Ran, was shown to form a complex with both RAN and Shc, suggesting a mechanism for Shc entry into the nucleus as part of a tertiary complex. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 20 October 2008; received after revision 04 December 2008; accepted 15 December 2008  相似文献   

8.
Separation of a lipophilic extract of a soft coral,Sinularia sp., assayed by enhancement of glucose transport in rat adipocytes, gave farnesyl 4-O--D-arabinopyranosyl--D-arabinopyranoside-2,2,3-triacetate (1a) whose structure was determined by spectroscopy. Enhancers of glucose transport may be useful for the prevention and treatment of diabetic disorders.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号