首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
实变函数论中的菲赫金哥尔茨(?)定理是这样的: 若F〔f(x)〕对于所有绝对连续函数f(x)常为绝对连续函数,则F(x)满足李卜希兹条件。本文利用磨光函数的方法,使上述定理中f(x)的范围缩小为满足|f′(x)|≤1的函数,从而将菲赫金哥尔茨定理的条件大大减弱。随之可得出两个推论。现叙述如下: 定理若F〔f(x)〕对于所有满足|f′(x)|≤1的函数f(x)常为绝对连续函数,则F(y)(y∈〔a,b〕)满足李卜希兹条件。  相似文献   

2.
文〔1〕将牛顿——莱布尼兹公式进行了推广,本文进一步推广为:定理设函数f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_-′(x)在(a,b)内存在,如果存在 p、q≥0,满足 p+q=1,使得函数 pf_+′(x)+qf_--′(x)在〔a,b〕上黎曼可积,则integral from b to a (pf_+′(x)+qf_--′(x))dx=f(b)-f(a).为证此结果先介绍两个有用的引理.引理1 设 f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_--′(x)在(a,b)内存在,则存在ξ∈(a,b)  相似文献   

3.
在《数学分析》中关于一元函数的最大(小)值问题,对闭区间上的连续函数有一个较简单的算法,但对开区间区的连续函数仅谈了一个开区间的可导函数在具有唯一驻点时判别它是否是取得最大(小)值点的一个方法(见参考文献[1],[2],[3],[4])。这个方法通常被称为“单峰,单谷定理”,本文以明确形式归纳为推论1。本文定理一将其推广到较为一般的形式。在此基础上本文定理二给出了“开区间上的连续函数在具有唯一极值备选点时,具有最大(小)值的充分必要条件”。这是本文的主要结果。设 f(x)在(a,b)内连续,而在(a,b)\{c},a0这个定理给出了任意区间的连续函数在具有唯一极值备选点时求函数最大或最小值的一个相当简单的算法(推论2)(如文中例题所示)。  相似文献   

4.
数学分析里,我们知道闭区间上连续的函数具有几个重要的性质,其中的一个是介值定理:1) f(x)∈C,x∈(a,b)2) f(a)≠f(b)则当 x 从 a 增至 b 时,f(x)将取遍 f(a)与 f(b)间的一切值。介值定理在很大程度上表达了(闭)区间上连续函数的特征。这一定理的逆命题不一定成立,例如  相似文献   

5.
在数学分析中第二积分中值定理的基本形式是: 定理1 设f(x)在〔a,b〕(a〈b)上单调下降(即使广义的也可以),并且非负,则对〔a,b〕上的任意可积函数g(x),有integral from n=a to b (f(x)g(x)dx)=f(a) integral from n=a to b (g(x)dx) (1)其中ξ∈〔a,b〕。其证明可参见〔1〕、〔2〕、〔3〕。定理1仅告诉我们其中的ξ∈〔a,b〕,那么能否恰当地选取ξ,使之属于开的区间(a,b)呢?我们说,不一定!且看下面的例题。考虑〔0,(3/2)π〕上函数 f(x)=1与g(x)=cosx,显然它们满足定理1的条件,于是按照定理1,(1)式应该成立。然而  相似文献   

6.
本学报1979年第2期及1980年第3期分别载文论述了积分第一中值定理就“中值”c∈(a,b)的情形的证明,为适应教学需要,对此本文再较条理地整理如下。定理设函数f(x)在区间〔a,b〕上连续,函数g(x)在〔a,b〕上可积且不变号,则存在点c∈(a,6),使得  相似文献   

7.
本文给出了向量值可测函数等价类〔f〕的连续和弱连续的定义,并得到如下结果:如果〔f〕在〔a,b〕(?)R上(弱)连续,则必存在且唯一的g∈〔f〕使得g是〔a,b〕上的(弱)连续函数。以上定义及结论是A.C.Zaanen在文〔1〕中相应部分的推广。  相似文献   

8.
关于平均值函数的极值问题   总被引:1,自引:0,他引:1  
本文主要讨论在〔a,b〕上的连续函数f(x)的平均值函数的极值问题。它可用于周期性经营项目最佳周期的确定。  相似文献   

9.
在多元函数积分学中,讨论重积分与累次积分的关系是十分重要的。它给出了计算重积分的一个简便的、行之有效的方法。在勒贝格积分理论中,有一条著名的富比尼定理,这个定理可以叙述为: (1)设f(x,y)是矩形I=〔a,b〕×〔c,d〕上的勒贝格可积函数,则在〔a,b〕上除去一个零测度集以外,f(x,y)作为y的函数是勒贝格可积的,而且函数(?)在〔a,b〕上勒贝格可积(在上述零测度集上,φ(x)可任意定义),同时以下等式成立:  相似文献   

10.
早在数学的启蒙阶段,随着微积分理论的成熟,即建立了著名的拉格朗日中值定理:假设实函数f:[a,b]→R连续且在(a,b)上每一点处可微,则必存在t_0∈(a,b)使得(1) f(b)-f(a)=f′(t_0)(b-a). 本世纪以来,随着泛函分析微分理论的发展,又有相应的微分中值定理出现,例如弱可  相似文献   

11.
大家知道,如果f(x)在〔a,b〕上非负连续且integral from a to b(f(x)dx=0),则f(x)在〔a,b〕上恒等于0.但若把条件减弱为“f(x)在〔a.b〕上非负可积且integral from a to ∞b(f(x)dx=0)”,是否还能作出“在〔a,b〕  相似文献   

12.
提到中值定理,读者会想到罗尔、拉格朗日、柯西等微分中值定理及积分中值定理。文[1]中又提出了微分学中的一个结论(称为中值定理),表述如下:定理设函数 f(x),g(x)在[a,6]上连续,在(a,6)内有连续导数 f′(x),g′(x),g′(x)≠0,则存在ξ∈[a,b]使有  相似文献   

13.
应用Zalcman引理研究了与导数有分担值的全纯函数族的正规族,把分担值减弱为单项分担值,得到了如下的结论:设F是区域D内的一族全纯函数,a,b是非零有穷复数,若对于每个f(z)∈F,若F满足:(1)f(z)=0=f′(z)=a,f′(z)=a=f′′(z)=b则F在D内正规;(2)k≥2为一整数,b为一正数f(z)=0=f′(z)=a,f′(z)=a=f(k)(z)≤b则F在D内正规.  相似文献   

14.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

15.
如果函数y=f(x),在[a,b] 内连续,在区间(a,b)内可微,则有 f(b)-f(a)/b-a=f′(ξ) 其中ξ∈(a,b),b>a这时设y=f′(ξ)是[a,b]上的有界函数,则有如下结论:(1)若f′(ξ)≥m f(b)-f(a)≥(b-a)m(2)若f′(ξ)≤m f(b)-f(a)≤(b-a)m(3)若n≤f(ξ)≤m n(b-a)≤f(b)-f(a)≤m(b-a)  相似文献   

16.
在学习了导数之后,要想运用导数这一概念去分析和解决更复杂的问题,只知道怎样计算导数还是不够的,还需要掌握微分中值定理,它是微分应用的桥梁,对微分中值定理有必要进行更深入的研究.微分中值定理包括三个定理:[1]罗尔(Rolle)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(b)=f(a),则在(a,b)内至少存在一点ξ,使得 f’(ξ)=0.[2]拉格朗日(Lagrange)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可  相似文献   

17.
关于定义在实区间[a,b]上,而在实 Banach 空间 E 内取值的抽象函数积分的Newton—Leibniz 公式,定光桂在[1]中证明了如下定理:设 x(s)是实区间[a,b]上有 R—可积的弱导数 x′(s),则有:ingegral from a to b x′(s)ds=x(b)-x(a)本文的目的在于:得出两个有关抽象函数积分的 Newton—Leibniz 公式的定理;从  相似文献   

18.
本学报1979年第2期刊登了绍文同志《关于积分第一中值定理》一篇文篇,作者给出了定理的证明。本文就C∈(a,b)的问题再给出一个较为简明的证明,并给一个例子,说明连续的条件是必要的,即若f(x)在〔a,b〕上不连续时,则结论不再成立。这个定理是这样叙述的: 积分第一中值定理设在区间〔a,b〕上f(x)与g(x)都可积,且g(x)不变号,m≤f(x)≤M,则存在μ,m≤μ≤M,使下式成立 integral from n=a to b(f(x)g(x)dx)=μintegral from n=a to b(g(x)dx) (1)如果f(x)在〔a,b〕上连续,则可进一步证明,存在C∈(a,b),使 (?) (2) 为了叙述上的完整起见,把前一部分的证明也写上。证明:先证前一部分。由f(x)与g(x)在区间〔a,b〕上的可积性知(1)式左端的积分是存  相似文献   

19.
<正>在一般的高等数学或数学分析教科书中,著名的Newton-Leibniz公式由下述形式给出:定理设f(x)在[a,b]上连续,若在[a,b]上存在一可微函数F(x),使得F'(x)=f(x).则本文的目的是给出该定理的一种推广形式,即将上述定理中的F'(x)=f(x)换成f(x)是关于单调增加函数g(x)的导数,得到了与Riemann—Stieltjes积分有关的更一般的结论,并以上述定理为其特例.  相似文献   

20.
本文给出了几乎处处上半连续的函数族测度逼近几乎处处有限可测函数的一个充要条件,并由此给出几个直接结果。定义设f(x)是〔a,b〕上的可测函数,S是〔a,b〕上的可测函数族,称S测度逼近f(x)是指出任意ε〉0和δ〉0,存在g(x)∈S,满足 mE(|f(x)-g(x)|≥ε)〈δ,其中E(|f(x)-g(x)|≥ε)={x|x∈〔a,b〕,|f(x)-g(x)|≥ε},“m”为集合的测度符号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号