首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了温度从15℃升高到50℃时,安徽省某地石英砂矿物的反浮选特性。研究表明在矿浆pH值2~2.5时,温度为45℃,石英表面ζ电位的负值是试验温度范围内的最低值,此时长石的表面ζ电位的负值比在25℃时要大,有利于阳离子捕收剂在长石表面的吸附,从而提高长石与石英的浮选分离效果。  相似文献   

2.
以石英纯矿物浮选回收率和季铵盐活性物含量为指标,进行了摩尔比、温度、时间等合成条件的优化.以酒钢焙烧磁铁矿实际矿石在捕收剂M-N作用下进行脱硅反浮选,所得铁精矿品位56.54%、回收率77.33%.在5~30℃ 条件下,浮选精矿指标稳定,耐低温性优良.捕收性能优于传统药剂十二胺和醚胺.Zeta电位和红外光谱分析表明,M-N在石英表面发生静电吸附作用和氢键作用,因此加强了浮选分离的效果.  相似文献   

3.
阴阳离子捕收剂在长石与石英表面的吸附特性   总被引:2,自引:0,他引:2  
采用单矿物浮选、ξ-电位和芘荧光探针,研究阳离子捕收剂十二胺(DDA)和阴离子捕收剂十二烷基磺酸钠(SDS)在长石和石英表面的吸附特性.单矿物浮选结果表明:pH=2.0时,相同浓度的单一或混合捕收剂溶液中长石的表面疏水性要强于石英的表面疏水性,混合捕收剂中矿物表面疏水性比单一捕收剂中的强.ζ-电位测定结果表明:在阴/阳离子单一捕收剂中长石和石英ζ-电位分别向负方向和正方向移动;阴阳离子混合捕收剂摩尔比接近1:1时,pH在2.0、2.5和9.0时长石和石英各自ζ-电位相差不大.芘荧光探针分析结果表明:pH=2.0时,捕收剂在低浓度时通过静电作用零星吸附于矿物表面,矿物表面极性与捕收剂浓度呈负相关,当矿物表面形成胶束后,单一捕收剂溶液中矿物表面极性有所增强,而混合捕收剂溶液中矿物表面极性继续降低;在相同条件下的混合捕收剂溶液中矿物表面的疏水性比单一捕收剂强,且在矿物表面形成胶束浓度要比单一捕收剂低;整体而言,相同浓度条件下单一和混合捕收剂溶液中长石表面疏水性比石英的强.  相似文献   

4.
实验考察了十二胺对硅藻土、钠长石、石英的捕收能力.通过ζ-电位、红外光谱检测对十二胺与硅藻土、钠长石、石英的作用机理进行了分析.浮选实验结果表明,pH为5.5~10.5,十二胺浓度为2.38×10-4mol/L时,钠长石和石英单矿物浮选回收率分别在92%和97%以上,而硅藻土的回收率在5%以下.ζ-电位分析结果表明,pH为5.5~10.5时,十二胺在钠长石和石英表面的吸附明显强于在硅藻土表面的吸附,这与浮选结果一致.红外光谱分析结果表明,pH为5.5时,十二胺在硅藻土、钠长石、石英表面均存在物理吸附、氢键作用,且在硅藻土表面的吸附强度相对弱,导致其可浮性差.  相似文献   

5.
研究了油酸钠直接浮选孔雀石的浮选行为及作用机理.采用浮选试验、Zeta电位测试、傅里叶红外光谱测试、溶液化学计算及热力学计算进行吸附机理分析.浮选试验表明:当捕收剂油酸钠用量为160 mg/L、pH值范围7~10时,孔雀石浮选回收率可以达到70%以上;当pH=9.5时,回收率为88.67%,达到最高;动电位及溶液化学表明:油酸钠在矿浆中的组分为C_(17)H_(33)COOH·C_(17)H_(33)COO~-,C_(17)H_(33)COO~-和(C_(17)H_(33)COO)_2~(2-),油酸钠在孔雀石表面主要发生了化学吸附;根据吉布斯自由能的计算和红外光谱测试分析表明:在合适的p H值范围,油酸钠与孔雀石表面的铜离子作用生成油酸铜盐沉淀,改变了孔雀石的表面性质使它表面疏水从而容易浮选回收.  相似文献   

6.
通过浮选试验研究了新型捕收剂烷基羟丙基胺(NDIA)作用下石英和赤铁矿的浮选行为,并结合量子化学计算和zeta电位分析,考察了该捕收剂在矿物表面的吸附机理.单矿物浮选试验结果表明:当捕收剂用量为33.33 mg/L,p H值为4.50~8.00时,石英的回收率在92%以上,赤铁矿的回收率在50%左右.人工混合矿分选试验结果表明:当捕收剂用量为33.33 mg/L,淀粉用量为13.33 mg/L,p H值为4.50~8.00时,NDIA均可实现石英和赤铁矿的有效分离.量子化学计算结果表明,与十二胺相比,NDIA对石英具有更好的捕收性能.zeta电位测试结果表明:NDIA在石英和赤铁矿表面均发生了吸附,且在石英表面的吸附作用强于赤铁矿.  相似文献   

7.
实验考察了十二胺对硅藻土、钠长石、石英的捕收能力.通过ζ-电位、红外光谱检测对十二胺与硅藻土、钠长石、石英的作用机理进行了分析.浮选实验结果表明,pH为55~105,十二胺浓度为238×10-4mol/L时,钠长石和石英单矿物浮选回收率分别在92%和97%以上,而硅藻土的回收率在5%以下.ζ-电位分析结果表明,pH为55~105时,十二胺在钠长石和石英表面的吸附明显强于在硅藻土表面的吸附,这与浮选结果一致.红外光谱分析结果表明,pH为55时,十二胺在硅藻土、钠长石、石英表面均存在物理吸附、氢键作用,且在硅藻土表面的吸附强度相对弱,导致其可浮性差.  相似文献   

8.
以赤铁矿、菱铁矿和石英为研究对象,通过沉降试验、Zeta电位测试、傅里叶红外光谱分析和溶液化学计算研究了柠檬酸在强碱性条件下(pH=11.0)的分散机理.沉降试验结果表明,柠檬酸对人工混合矿(赤铁矿-菱铁矿-石英)具有较好的分散效果.动电位和红外光谱测试表明,柠檬酸在赤铁矿和菱铁矿表面的吸附较强烈并使其动电位负移,而在石英表面的吸附较弱并对石英动电位影响较小.溶液化学计算表明,柠檬酸主要以[C_6H_5O_7]~(3-)的形式吸附在赤铁矿和菱铁矿的羟基化表面,进而阻止矿粒间的凝聚.结果表明柠檬酸在含碳酸盐赤铁矿浮选体系中具有分散作用.  相似文献   

9.
铝土矿反浮选新型阳离子有机硅类捕收剂QAS222   总被引:1,自引:0,他引:1  
考察新型阳离子捕收剂有机硅季铵盐QAS222对一水硬铝石、高岭石、叶蜡石、伊利石4种单矿物及其混合物的浮选行为,并对其机理进行分析.研究结果表明,在碱性条件下,QAS222是铝土矿反浮选脱硅的有效捕收剂;在矿浆pH=ll和QAS222浓度为4×10-4 mol/L条件下,可实现不同铝硅比人工混合矿反浮选脱硅.高岭石、伊利石和叶蜡石零电点分别为3.4,3 0和2 5,一水硬铝石与QAS222作用后零电点由6.2提高至10.9;当QAS222浓度为4×10-4 mol/L时,4种矿物表面动电位随矿浆pH增加不同程度地先增加后减少,但在pH=2~12范围内,3种铝硅酸盐矿物动电位大于0V,证实了单矿物浮选实验结果;QAS222在高岭石、叶腊石和伊利石表面除发生静电吸附作用、氢键作用和铵吸附外,还发生化学吸附,使其牢固地吸附在矿物表面,并在广泛pH范围内保持较好可浮性;而当矿浆pH=ll时,QAS222与一水硬铝石作用较弱,很难形成表面吸附,导致其可浮性较差.  相似文献   

10.
本文给出了有、无硫化钠存在时,黄铜矿和黄铁矿的无捕收剂浮选行为。研究表明,黄铜矿具有良好的自诱导可浮性,浮选的电位范围和pH范围较宽;弱酸性和碱性介质中,黄铁矿自诱导浮选差,没有任何可浮电位范围。然而,硫化钠的添加,明显促进了黄铁矿的无捕收剂浮选。天然矿石浮选试验表明,自诱导和硫诱导浮选技术能够有效地浮选和分离黄铜矿和黄铁矿。通过HS~-离子吸附量的测定、矿物表面中性硫量提取分析、矿浆电位测试和量子化学计算,较详细地研究了黄铜矿和黄铁矿无捕收剂浮选的机理。研究结果表明,矿物表面中性硫是主要疏水体。  相似文献   

11.
N-十二烷基-1,3-丙二胺在赤铁矿反浮选中的应用   总被引:1,自引:0,他引:1  
通过单矿物试验考察了N-十二烷基-1,3-丙二胺(ND13)对赤铁矿和石英的浮选行为,结果表明,ND13对石英具有良好的捕收性能,在捕收剂用量为50mg/L,pH=7~10时,石英回收率达93%以上.人工混合矿分选试验结果表明,ND13对赤铁矿和石英质量比为1∶1(铁品位为35%)的人工混合矿具有一定的分选效果,在ND13用量为66.7mg/L,淀粉用量为6.67mg/L,pH=7.27的条件下,达到较好的分选效果,此时精矿中铁的回收率为86.35%,精矿的铁品位为62.78%,尾矿的铁品位为9.21%.动电位和红外光谱分析结果表明,ND13主要以静电和氢键作用在矿物表面发生吸附.  相似文献   

12.
研究了减性介质中硫化钠作还原电位调整剂时砷黄铁矿的无捕收剂浮选,即硫化钠诱导浮选。普通还原剂S_xO_y~(2-)(如S_2O_4~(2-)、S_2O_3~(2-)、SO_3~(2-))调控矿浆电位时,砷黄铁矿无捕收剂浮选行为较差;而用硫化钠调控电位时,浮选行为明显得到改善,矿浆电位下限降低。这表明HS~-离子在降低矿浆电位同时,还能增加砷黄铁矿表面的疏水性。通过矿浆电位测量,HS~-离子在砷黄铁矿表面吸附量测定,中性硫的溶剂提取-化学分析,研究了HS~-离子的上述两种作用。结果表明,砷黄铁矿经硫化钠调浆后矿浆的铂电极静电位丁降不大,HS~-离子能在砷黄铁矿表面发生电化学吸附而生成疏水中性硫。  相似文献   

13.
氢氧化物表面沉淀在石英浮选中的作用   总被引:1,自引:0,他引:1  
采用ζ-电位测定、吸附量测定、浮选实验及溶液化学计算,研究了金属离子在石英表面的吸附行为及其对石英表面ζ-电位和浮选行为的影响。结果表明,表面金属氢氧化物沉淀是金属离子在石英表面吸附的活性组分。表面沉淀生成后,石英表面ζ-电位变正,变正的pH值CR2对应于表面沉淀生成的pH值(pH_s),随着pH值的增加,ζ-电位再次变负的pH值CR3对应于氢氧化物固体的PZC_e。用阴离子捕收剂浮选时,CR2≤pH≤CR3是金属离子起活化作用的有效pH范围。用阳离子捕收剂浮选时,则是起抑制作用的有效范围。  相似文献   

14.
通过单矿物浮选实验、混合捕收剂溶液化学计算、动电位测试以及红外光谱分析,对阴阳离子混合捕收剂(油酸钠/十二胺)浮选分离锂辉石与长石的行为及机理进行研究。研究结果表明,阴阳离子混合捕收剂能够显著提高锂辉石与长石的浮选分离效率。当溶液pH为8.5、油酸钠与十二胺物质的量比为6:1~10:1时,混合捕收剂对锂辉石与长石的浮选分离能取得很好的效果,其中锂辉石的浮选回收率可达85%,而长石的回收率只有25%。混合捕收剂在溶液中的存在形态与溶液的pH有关,在浮选分离的适宜pH=8.5时以分子-离子络合物的形式存在。这种分子-离子络合物对锂辉石和长石具有选择性吸附的作用。在混合捕收剂溶液中,锂辉石和长石的动电位均处于与十二胺作用后及油酸钠作用后的动电位之间,说明混合捕收剂中的2种组分在矿物表面均有吸附,而混合捕收剂使锂辉石表面动电位负移程度明显强于使长石表面动电位负移程度,说明混合捕收剂在锂辉石表面的吸附量明显比在长石表面的大,从而可以实现锂辉石和长石的选择性分离。  相似文献   

15.
针对选煤厂浮选过程存在的问题,对浮选药剂进行改进,探讨一种新型煤泥浮选促进剂CG的制备工艺,将促进剂CG与柴油按比例配制成新捕收剂,进行浮选实验研究和相关机理分析。通过红外光谱发现新捕收剂与煤样作用后,在2 325 cm-1附近出现新的羧基吸收峰,表明新捕收剂与煤样表面发生了化学吸附;通过Zeta电位分析,发现新捕收剂对煤样的吸附使煤粒表面Ze-ta电位减小,表明促进剂CG的极性基与煤表面亲水的含氧官能团发生氢键吸附,除去了含氧官能团对煤浮选的不利影响,使煤粒表面的疏水性增大。结果表明,使用新捕收剂比之柴油可以较大幅度地提高精煤产率。  相似文献   

16.
本文用铜铁灵为捕收剂浮选了硫酸铅、菱锌矿、方解石、石英单矿物和混合矿,得到了较好的结果。用测定ξ-电位、红外光谱等手段研究了铜铁灵浮选菱锌矿的作用机理。结果表明,铜铁灵与菱锌矿表面发生化学吸附。  相似文献   

17.
本文研究了辉锑矿的浮选行为与矿浆 pH、矿物表面与电位、双电层结构、浮选剂在矿物表面吸附的关系.提出辉锑矿在水溶液中,以 pH=5为界,发生两种类型的溶解、解离及水化反应、热力学计算及图解与试验结果相符.由此确定出辉锑矿在矿浆中的两类双电层模型及不同定位离子,能较好地解释辉锑矿的浮选行为.指出在酸性介质中,辉锑矿浮选少用或不用捕收剂和活化剂的可能性.  相似文献   

18.
为了探究脂肪酸类捕收剂在浮选石英过程中,钙离子活化石英的作用及机理,进行了浮选试验、动电位检测、红外光谱分析.结果显示石英被浮选需要钙离子的活化,钙离子能增加石英的表面动电位,以及改性脂肪酸捕收剂DWD-3能在被钙离子活化的石英表面发生吸附,且存在化学吸附、氢键吸附;量子力学模拟显示,Ca2+,Ca(OH)+,OH-能在石英表面发生吸附,且Ca2+吸附作用最强,钙离子活化石英的过程是Ca2+优先在石英表面上的O处发生化学吸附,形成被Ca2+活化的表面,捕收剂DWD-3以单键氧O与2个双键O吸附在被活化的石英表面.  相似文献   

19.
捕收剂CSU-A与黄铜矿作用机理   总被引:1,自引:0,他引:1  
通过矿物浮选实验、吸附量测试以及红外光谱分析,研究CSU A与黄铜矿和黄铁矿相互作用的规律.浮选实验结果表明,当CSU A的质量浓度为6mg/L,溶液pH值为9.0~9.5时,CSU A对黄铜矿捕收能力强,对黄铁矿捕收能力弱;红外光谱分析结果表明,捕收剂CSU A与黄铜矿和黄铁矿作用前、后的红外光谱图明显不同,在黄铜矿与药剂作用后出现了6cm-1的波数位移,而黄铁矿与捕收剂作用前、后的红外光谱图基本上没有变化.由此可以确定,捕收剂CSU A在黄铜矿表面发生了化学吸附,而在黄铁矿表面仅是简单的物理吸附.捕收剂CSU A具有选择性的主要原因是在黄铜矿和黄铁矿表面发生吸附的形式不同.  相似文献   

20.
用石英晶体微天平(QCM-D)实时原位测定油酸钠和混合脂肪酸(KS-I)在经Ca~(2+)活化的SiO_2表面的吸附量,并结合单矿物浮选、原子力显微镜(AFM)和Zeta电位,研究捕收剂的吸附机理。研究结果表明:当矿浆p H为12.0时,油酸钠的浮选效果比KS-I的好,且活化剂和捕收剂用量都比KS-I的小。矿浆中Ca(OH)_2浓度为6.48×10~(-5)mol/L且油酸钠用量为30 mol/L时,石英的回收率可达到97.9%;而KS-I在Ca(OH)_2浓度为2.16×10~(-4)mol/L且捕收剂用量为90 mol/L的条件下得到最佳的回收率仅为78.6%。Ca~(2+)在SiO_2表面的吸附分为2个阶段,油酸钠在活化后的SiO_2表面形成吸附量为5.4×10~(-6)g/cm2的黏弹性吸附层,且只有1个吸附阶段。而KS-I在SiO_2表面的吸附量只有2.5×10-8 g/cm~2。油酸钠在SiO_2表面形成15.2~97.3 nm的吸附层,而KS-I在SiO_2表面的吸附层最厚仅为10 nm,且2种药剂在整个表面的吸附并不均匀。油酸钠与KS-I在活化的石英表面均发生静电吸附作用,但油酸钠的吸附量比KS-I的吸附量大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号