首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu掺杂对ZnO纳米薄膜的结构及其光学特性的影响   总被引:1,自引:0,他引:1  
采用磁控溅射法(RF)在玻璃基底上制备了未掺杂和不同Cu掺杂浓度的ZnO薄膜.使用X射线衍射仪(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)分别对样品的形貌进行了表征,并对ZnO薄膜进行了应力分析.结果显示:所有样品都呈现出(002)衍射峰,有较好的c轴择优取向;所有样品出现有3个发光峰,分别对应于400 nm(3.14 eV,紫光),444 nm(2.78 eV,蓝光),484 nm(2.56 eV,蓝光).紫峰的存在与激子的存在有极大关系,而蓝光发射主要是由于电子从导带上向锌空位形成的浅受主能级上的跃迁.随着Cu掺杂量的增加,薄膜的带隙宽度Eg随之减小,样品光学带隙值由3.26 eV逐渐减小为2.99 eV.实验中还发现,随着Cu掺杂量增加,薄膜的透射率也随之减小.  相似文献   

2.
目的 比较氮掺杂的氧化锌薄膜与纯氧化锌薄膜的发光特性.方法 用射频磁控溅射法,在玻璃衬底上通过控制氢气,氧气,氮气的流量,制备了纯氧化锌薄膜和氮掺杂的氧化锌薄膜样品.结果 通过比较纯氧化锌薄膜样品和氮掺杂的氧化锌薄膜样品的发光谱,在466nm(2.6 eV)附近发现了一个发光峰;氮掺杂的氧化锌薄膜样品的带隙比纯氧化锌薄膜样品的带隙宽.结论 氮掺杂的氧化锌薄膜在466 nm左右的发光峰与氮有关;带隙变宽的原因:一个是样品中的晶粒小引起的量子限制效应,另一个是压应力引起的氧化锌晶格中的氧原子的2p轨道和锌原子的4s轨道之间斥力增大.  相似文献   

3.
利用直流反应磁控溅射的方法和后退火技术在石英衬底上制备不同Cd含量的Zn_(1-x)Cd_xO(0≤x≤1)薄膜.利用XRD、XPS、TEM、Absorption及Hall等详细地对薄膜的结构、光学及电学性能进行了研究.研究发现:当x=0~0.2时,Zn_(1-x)Cd_xO薄膜为沿(002)方向择优生长的六角相结构;当x=0.5时,合金薄膜出现了六角相和立方相共存现象;当x≥0.8时,合金薄膜为沿(200)方向择优生长的立方相结构.结构为六角相时,合金薄膜的带隙从x=0时的3.25 e V减小到x=0.2时的2.75 e V;结构为立方相时,薄膜的带隙从x=0.8时的2.52 e V减小到x=1时的2.42 e V,带隙的变化很小.另外,霍尔测量结果表明,Cd含量对Zn_(1-x)Cd_xO薄膜的电学性质影响很大.  相似文献   

4.
采用射频磁控溅射方法以不同的氮气分压比(1/10~2/3)制备出一组硼碳氮薄膜.傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)测量发现样品的组成原子之间均实现了原子级化合.XPS测量结果表明,所有样品中的B、N原子比近似为1:1,其化学配比为BCx N(0.16<x<1.46).紫外/可见/近红外分光光度计用于测量样品的吸收光谱.由吸收谱线在低能区域(2.0~3.0 eV)的光吸收,利用关系作图法求出光学带隙Eopt范围为0.17~0.83 eV.氮气分压比对薄膜的组分和光学带隙有很大影响,其通过改变薄膜组分而影响光学带隙,并且碳原子数小的样品具有较宽的光学带隙.以氮气分压比为1/3条件下制备的样品中碳原子数最小,它的光学带隙最宽为0.83 eV.  相似文献   

5.
采用射频磁控溅射技术在石英衬底上制备了不同Cd掺杂浓度的ZnO∶(In,Cd)薄膜,并研究了Cd掺杂浓度对薄膜光学和电学性质的影响。透射光谱测试发现,掺Cd对薄膜的透射率影响不大,都在80%以上,且随着Cd掺杂浓度的增加,薄膜的禁带宽度在3.253~3.148eV范围内减小。霍尔测试表明,Cd掺杂增强了薄膜的导电性,当Cd掺杂浓度为0at.%、2at.%和4at.%时,薄膜的电阻率分别为(2.68×10-1)、(1.30×10-1)和(6.83×10-2)Ω.cm。结合理论计算和光致发光谱分析认为,Cd掺入后ZnO的导带明显下移,这不仅导致ZnO∶(In,Cd)薄膜的带隙变窄,同时使施主杂质(Zni和InZn等)的电离能减小,从而增强了薄膜的导电性能。  相似文献   

6.
采用溶胶-凝胶法制备Cu_2ZnSnS_4的前驱体溶液,结合旋转涂覆法和空气中的预热处理技术制备不同金属含量Cu/(Zn+Sn)=x(0.5,0.8,1.0)的CZTS薄膜样品.利用XRD和紫外可见分光光度法,对CZTS薄膜晶体结构和光学性能进行表征.结果表明:样品XRD图谱中可以观察到锌黄锡矿结构CZTS的(112)、(220)、(312)衍射峰,且沿(112)峰择优生长;随着Cu掺杂浓度的增加,禁带宽度变小,可获得最佳接近太阳能电池要求的带隙值1.42eV.  相似文献   

7.
采用共沉淀法制备了Pb2 掺杂的Cd0.2Zn0.8S及Cd0.8Zn0.2S固溶体光催化剂.实验结果表明,Pb2 掺杂的宽带隙固溶体Cd0.2Zn0.8S在6s轨道与固溶体的价带杂化后提升了价带位置,降低了半导体的带隙,因而提高了产氢活性.当Pb2 掺杂窄带隙固溶体Cd0.8Zn0.2 S后,形成固溶体价带附近的杂质能级,并成为光生电子空穴复合中心,因而不能提高产氢性能.因此,Pb2 对半导体的可见光改性仅适用于较宽带隙的半导体.  相似文献   

8.
为了研究镧和锶共掺对铁酸铋纳米颗粒结构和物性的影响,通过溶胶-凝胶法制备了镧和锶共掺的铁酸铋纳米颗粒La_(0.1)Bi_(0.9-x)Sr_xFeO_y(x=0,0.2,0.4).通过X线衍射、透射电子显微镜、紫外-可见吸收光谱测试、漏电流和介电性能测试以及磁滞回线测试对样品的晶体结构、微观形貌、光学性能、电学性能和磁学性能进行表征.实验结果表明:随着锶含量的增加,样品的晶体结构从扭曲的菱方钙钛矿结构向四方结构转化,且样品的平均颗粒尺寸大幅度减小,从180 nm减少到50 nm.随着锶掺杂量的增多,样品的带隙值从2.08 eV减小到1.94 eV;同时,LBSF纳米颗粒的导电性明显增加,使LBSF样品从绝缘体过渡为半导体.此外,随着锶含量的增加,样品的饱和磁化强度也大幅度提高.由实验结果可知,镧和锶共同掺杂可以获得铁酸铋基的纯相多铁性材料,同时可以有效调节其电导率和磁性.  相似文献   

9.
本文用双源真空蒸发的方法制备了Cd1-xZnxTe薄膜,通过热探针、SEM、XRD及紫外-可见光透过谱等方法研究了不同退火条件对薄膜性质的影响.退火后Cd1-xZnxTe多晶薄膜的光学禁带宽度在1.54eV~1.68eV之间,且沿立方相(111)面择优生长.退火温度主要影响薄膜表面的粗糙度和平均晶粒尺寸,退火时间主要影响薄膜的平均晶粒尺寸.退火温度与时间对薄膜电学性质的影响较小.  相似文献   

10.
采用磁控溅射方法在玻璃基底上制备了Sn掺杂In3O2(In3O2:Sn)半导体薄膜,通过XRD、XPS、四探针仪和分光光度计等测试表征,研究了生长速率对薄膜结构和光电性能的影响.结果表明:所制备的薄膜均具为(222)择优取向的立方锰铁矿结构,其结构参数和光电性能明显受到生长速率的影响.当生长速率为4 nm/min时,In3O2:Sn薄膜具有最大的晶粒尺寸(32.5 nm)、最高的可见光区平均透过率(86.4%)和最大的优值因子(7.9×104Ω-1·m-1),其光电性能最好.同时采用Tauc公式计算了样品的光学带隙,结果表明:光学带隙随着生长速率的增大而单调减小.  相似文献   

11.
以掺杂氧化锌(ZnO)陶瓷靶为溅射源材料,采用射频磁控溅射技术在石英玻璃衬底上制备了掺杂ZnO系列半导体薄膜样品.利用紫外-可见分光光度计测量了薄膜的透射光谱,通过Swanepoel法确定了薄膜的折射率和消光系数,利用外推法获得了薄膜的光学带隙,研究了不同掺杂对ZnO薄膜光学性能的影响.结果表明,钛掺杂和镓镁合掺后,ZnO薄膜的透过率和光学带隙增加而折射率减小;所有薄膜的折射率均随波长增加而单调减小,呈现出正常的色散特性.  相似文献   

12.
利用基于密度泛函理论(DFT)的全势线性缀加平面波(FP-LAPW)法,计算并比较Ni、Cu、Pt掺杂前后锐钛矿相TiO2晶体的能隙和电子态密度.计算结果表明,Ni、Cu、Pt掺杂后TiO2 的带隙分别为1 33、1 87和1 17 eV,相对于未掺杂的锐钛矿相TiO2(带隙为2 30 eV)都有明显的变窄,因而使吸收光谱红移.对于相同剂量的掺杂,同周期的Ni比Cu的掺杂效果更明显,同副族的Pt比Ni的掺杂效果更明显.  相似文献   

13.
采用溶胶凝胶法制备Bi1-xCaxFeO3前驱体溶液,利用旋涂的方法在ITO导电玻璃上制备Bi1-xCaxFeO3薄膜样品.用X-射线衍射仪、分光光度计分别对薄膜样品的晶体结构、透射光谱进行测量并利用透射光谱计算出材料的能带带隙.结果表明:所有Bi1-xCaxFeO3样品的主衍射峰与BiFeO3相吻合,具有较好的结晶度和良好的晶体结构,随着Ca2+掺杂量的增加,使BiFeO3样品的主衍射峰(104)与(110)逐渐成为单相峰(110),当Ca2+掺杂量大于0.05时,样品由斜六面体转变为正方晶系.所有样品在430nm~600nm区间形成陡峭的线性吸收边,随着Ca2+掺杂量的增加,吸收峰会发生红移.Ca2+掺杂能提高BiFeO3薄膜在可见光的吸收率.Ca2+掺杂导致BiFeO3薄膜带隙降低的主要原因是样品中的缺陷的数量、表面粗糙度及晶格结构共同作用的结果.  相似文献   

14.
真空蒸发法制备CdTe薄膜的光电特性   总被引:1,自引:0,他引:1  
真空蒸发技术制备的 Cd Te薄膜在可见光范围内的透射率很低 ,而且受材料配比和掺杂等因素的影响 .通过 Cd Te薄膜的透射光谱可计算出其吸收系数和光带隙 ,实验发现 ,掺In会使 Cd Te薄膜的光带隙变宽 .在电学特性上 ,Cd Te薄膜根据制备工艺的不同表现出 n型和 p型两种导电类型 ,本文主要研究了材料配比、掺 In及热处理对导电类型的影响 .另外掺杂及热处理会使 Cd Te薄膜电阻率下降达 2个数量级  相似文献   

15.
以镁钇掺杂的氧化锌(Zn O)陶瓷靶作为溅射靶材,采用射频磁控溅射技术在玻璃衬底上制备了镁钇合掺Zn O(MYZO)薄膜样品.通过X射线衍射仪和分光光度计的测试表征,研究了薄膜厚度对MYZO样品结构性质和光学性能的影响.结果表明:MYZO样品均为六角纤锌矿型的多晶结构,并且其择优取向生长特性明显受到薄膜厚度的影响,当薄膜厚度为290 nm时,MYZO样品具有(002)择优取向生长特性.另外通过光学表征方法获得了MYZO样品的光学能隙、折射率和消光系数,结果显示:MYZO样品的光学能隙大于未掺杂Zn O能隙,其折射率均表现为正常色散特性,并且遵循Wemple-Di Domenico单振子色散模型.  相似文献   

16.
铝掺杂氧化锌薄膜的光学性能及其微结构研究   总被引:1,自引:0,他引:1  
以氧化铝(Al2O3)掺杂的氧化锌(Zn O)陶瓷靶作为溅射靶材,采用射频磁控溅射工艺在玻璃基片上制备了具有c轴择优取向的铝掺杂氧化锌(Zn O:Al)薄膜样品.通过可见-紫外光分光光度计和X射线衍射仪的测试表征,研究了生长温度对薄膜光学性能及其微结构的影响.实验结果表明:薄膜性能和微观结构与生长温度密切相关.随着生长温度的升高,样品的可见光平均透过率、(002)择优取向程度和晶粒尺寸均呈非单调变化,生长温度为640 K的样品具有最好的透光性能和晶体质量.同时薄膜样品的折射率均表现为正常色散特性,其光学能隙随生长温度升高而单调增大.与未掺杂Zn O块材的能隙相比,所有Zn O:Al薄膜样品的直接光学能隙均变宽.  相似文献   

17.
掺氮可见光响应TiO2-xNx光催化薄膜的制备及性能初探   总被引:1,自引:0,他引:1  
采用反应磁控溅射法在玻璃基片上制备N掺杂TiO2-xNx薄膜和纯TiO2薄膜,并且对两种薄膜样品分别进行了300、400和500℃的退火处理.采用X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和紫外-可见光光度计(UV-Vis)对经过退火处理的样品进行了表征.结果表明:成功制备了N掺杂TiO2-xNx薄膜,部分N进入了TiO2薄膜晶格,并且以N-O键形式存在;N掺杂TiO2-xNx薄膜和纯TiO2薄膜相对比,晶型和表面形貌没有什么太大的区别,但通过紫外-可见光吸收谱图可以发现经过400℃退火处理的N掺杂TiO2-xNx薄膜吸收带边从纯TiO2薄膜的400 nm红移到455 nm.  相似文献   

18.
采用射频磁控溅射方法制备了ZTGO透明导电氧化物薄膜,通过紫外-可见分光光度计和四探针仪的测试以及光学表征技术,研究了生长温度(Tem)对样品光学、电学和光电综合性能的影响.结果表明,薄膜样品的性能参数与Tem值密切相关.当Tem为640 K时,样品的电导率为7.86×102 S?cm-1、光学带隙为3.48 eV、U...  相似文献   

19.
碳化硅薄膜的光学特性研究   总被引:1,自引:0,他引:1  
采用螺旋波等离子体增强化学气相沉积(HW-PECVD)技术制备了纳米晶碳化硅(nc-SiC)薄膜,利用傅立叶红外吸收谱(FTIR)、X射线衍射谱(XRD)、紫外-可见透射光谱(UV-Vis)和光致发光谱(PL)对薄膜的结构、光学带隙、发光特性等进行了测量和分析.结果表明,所沉积薄膜主要以Si-C键合结构存在,薄膜中包含有立方结构的3C-SiC晶粒,光学带隙2.59 eV,室温下薄膜表现出强的可见蓝色光致发光,发光峰位随氙灯激发波长的增加呈现红移现象,并将此发光归因于量子限制效应作用的结果.  相似文献   

20.
RF磁控溅射法制备PbTe纳米薄膜   总被引:1,自引:0,他引:1  
利用RF磁控溅射和真空退火方法制备了PbTe纳米薄膜.利用SEM、XRD、AFM和FTIR分别对制备的样品的表面形貌和颗粒大小、结构以及带隙宽度进行了测试.结果显示,在10 W溅射功率下制备的PbTe纳米薄膜为纳米颗粒镶嵌薄膜,在20 W功率下为PbTe颗粒膜.10 W制备的纳米颗粒的平均直径为40 nm左右,平均高度为5 nm; 20 W制备的颗粒直径为100 -400 nm,平均高度为65 nm;两个条件下制备的样品均表现出明显的<100>方向的择优取向性,并且20 W的结晶质量比10 W的好.FTIR分析显示10 W和20 W制备的薄膜的带隙宽度分别为0.340 eV和0.343 eV,都比块体带隙宽度大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号