首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
针对非理想电压下不能获取基波正序有功和无功电流的问题,通过对三相电压和电流并行地进行p-q坐标变换和低通滤波以降低系统延时,并获取三相基波正序电压和电流的综合相位信息,通过坐标反变换求出基波正序电流中的有功和无功分量,从而提出1种改进的ip-iq算法。研究结果表明:该算法在电网电压对称无畸变、电网电压不对称、电网电压同时存在畸变和不对称条件下,均能获取正确的基波正序有功和无功电流,为在有源电力滤波系统中实现对谐波电流、无功电流和不对称分量的综合补偿提供了合理的参考指令电流。  相似文献   

2.
简述正、负序基波提取器基本原理,提出无功、谐波和负序电流检测的2种方法,即改进同步参考坐标法和基于正、负序基波提取器的检测方法.改进同步参考坐标法通过对电网正序基波电压矢量的同步旋转跟踪,可以省去锁相环及三角函数的计算:基于正、负序基波提取器的检测方法则可以进一步省去α-β坐标系变换到d-q坐标系及其反变换的计算.仿真与实验结果表明:采用这2种检测算法都能准确地检测电网中的无功、谐波和负序电流;基于正序基波提取器的检测算法比改进同步参考坐标法的实时性更高.  相似文献   

3.
改进型谐波与基波有功和无功电流检测法   总被引:6,自引:0,他引:6  
在三相电压不对称时,传统ip-iq检测法中的锁相环检测到的电压相位并非该电压的正序分量相位,因此得到的瞬时有功和无功电流会存在误差.有鉴于此,文中提出了一种改进的ip-iq检测法,该方法用基于低通滤波器的基波正序电压提取单元代替传统的电压检测电路,提取单元能检测出电压正序分量的相位,从而在三相不对称时仍能精确检测基波有功、无功电流.最后通过仿真分析对所提出方法的正确性和可行性进行了证明.  相似文献   

4.
杜坤坤  常伟 《科技信息》2012,(6):132-134
本文详细的阐述了三相四线制系统中基于瞬时功率的p—q理论,本文通过引入辅助电流设计出基波正序电压检测器,对基于瞬时无功功率理论的p—q法进行改进,将基波正序电压检测器计算出的电压作为p-q法的系统电压,并根据补偿要求提取出需要补偿的功率分量,计算出待补偿电流。该方法适用于三相电网电压不对称和畸变的情况,仿真结果验证了该方法的正确性和有效性.  相似文献   

5.
为了实现电网谐波和无功电流的准确实时检测,在对同步坐标变换思路进行改进的基础上,提出了一种结合广义瞬时无功功率理论的无功电流检测方法,并进行了仿真。结果表明,该方法能更加准确地检测出广义瞬时无功补偿电流即不对称三相系统中的谐波、不对称分量以及无功电流分量的和,并能适用于三相电源电压对称无畸变和三相电源电压不对称且畸变的情况。理论推导和仿真实验结果验证了该方法的正确性和有效性。  相似文献   

6.
对UPQC补偿量检测方法进行了分析,提出在电网电压不对称且畸变的状态下实现UPQC补偿量综合检测的方法,该方法不存在锁相环和大量的坐标变换,通过正弦幅值积分器直接从不对称且畸变的电压中提取出基波正序电压,可直接用于电压补偿量的计算,同时为基于FBD法的谐波电流检测电路提供正弦参考信号,可快速准确地实现补偿量的检测。通过simiulink进行仿真,实现了电网电压谐波畸变且不对称状态下电压和电流补偿量的检测。  相似文献   

7.
针对单相电力线路中谐波和负载变化下无功不平衡与谐波干扰,运用瞬时无功功率理论ip-iq算法检测,提取电流基波有功分量,进而得到基波无功分量和谐波分量之和,采用电流闭环的电流直接控制策略,产生电流脉冲驱动信号,送到IGBT逆变桥,连接至电力线路进行补偿。仿真表明,存在谐波和负载变化时,通过该补偿装置可以达到电流跟踪精确、响应迅速、补偿充分等效果。  相似文献   

8.
准确、快速地检测电网电流中的谐波成分,是谐波抑制和无功补偿的关键.在小波分析的基础上,结合瞬时无功功率理论,提出了一种谐波和基波无功检测的改进方法.该方法能检测各次谐波和基波无功分量,且运算过程可用软件来实现,不必依赖昂贵的元件和复杂的电路.Matlab仿真结果表明:该方法能实时检测谐波电流和基波无功电流,且检测精度高,动态相应快.  相似文献   

9.
针对传统的谐波检测算法在检测三相电压对称时效果良好而不对称时存在很大误差的问题,提出一种新型的既适用于三相电压对称系统又适合三相电压不对称系统的高精度改进p-q谐波检测方法.该谐波检测方法应用正负序解耦理论提取三相电压的基波正序电压分量,通过给定的谐波拟合精度与相对误差等指标进行相应的跟踪计算,从而实现谐波电流的准确检测.通过仿真和实验表明,提出的谐波检测方法与传统方法相比具有较大的优势,精度、有效性和抗干扰性能表现良好.  相似文献   

10.
不对称三相四线制系统有害电流的检测方法   总被引:5,自引:0,他引:5  
ip-iq法能准确、实时地检测不对称三相系统中的有害电流,被广泛应用于三相电力有源滤波器,目前,在检测不对称三相四线系统的有害电流时,均事先剔除零序电流,然后再采用ip-iq法,通过理论分析证明,ip-iq法经过3/2变换后iα、 iβ中都不含零序电流分量,并且基波正序分量不会受到影响,因此含有3/2变换的p-q法、d-q法、ip-iq法都不会受到零序电流的影响,所以这些检测方法都不用先剔除零序电流而直接用于不对称三相四线系统有害电流检测。理论和仿真结果表明这种方法能正确检测出基波零库、负序及谐波分量,从而改变了长期以来认为ip-iq不能直接用于三相四线系统的观点。  相似文献   

11.
不对称三相电路谐波及基波负序电流实时检测方法研究   总被引:27,自引:1,他引:27  
电力有源滤波器是一种新型谐波抑制装置,对于不对称三相电路,可同时抑制其中的基波负序电流,为此需准确检测出谐波与基波负序电流之和,文中对一种基于三相电路瞬时无功功率伯检测方法进行了理论分析,仿真及实验、结果表明,该方法能准确地检测出谐波及其波负序电流。  相似文献   

12.
基波电流和任意次数谐波电流检测新方法   总被引:12,自引:0,他引:12  
本文发展了一种电网电流的检测方法,在考虑电网电压畸变和基波电压初始相角的情况下,只需通过检测一相线路的电流、电压,就能有效地检测出电网基波有功、无功电流和任意次数的谐波电流,适用于电网无功功率补偿、谐波的补偿以及故障诊断和保护。  相似文献   

13.
针对传统同步检测算法在三相电压不对称或畸变时存在的缺陷,提出了利用PARK变换提取基波正序电压代替相电压的改进算法.考虑到系统实时性和稳定性,采用TMS320VC5402数字信号处理器实现该算法,可完成对三相不对称系统中不对称、无功和高次谐波电流的检测与补偿.理论推导和仿真结果验证了所提方法的正确性.  相似文献   

14.
三相电压不对称时谐波和无功电流的准确检测   总被引:25,自引:0,他引:25  
讨论了三相电网电压不对称情况下对非线性负荷合理的补偿方案,对基于“瞬时无功功率理论”的谐波检测方法所存在的不足进行了分析,继而提出了一种新的基波无功和高次谐波电流检测方法。由于采用了双闭环方式,使得在三相电压不对称并含有高次谐波的情况下,也可以对基波无功和高次谐波电流进行准确的检测,检测精度受元件参数变化影响小,具有较强的适应性。另外,按照功率平衡的原理,对补偿电流进行了修正。仿真分析对该方法的正确性和可行性进行了证明。  相似文献   

15.
根据非线性负载的等效电路模型,以“当负载电流为周期电流时,负载电流与负载基波有功电流差的绝对值在一个周期内的积分值最小”为检测原理,提出了一种基于迭代算法的有源电力滤波器单相电路谐波电流检测方法.使用该方法先计算出产生基波有功电流的电阻部分对应的电导,则可求出基波有功电流,用负载电流减去基波有功电流,就得到实际要补偿的谐波及无功电流.该方法具有计算量非常小,实时性好,检测精度高等特点.理论分析与仿真研究证实了该方法的有效性.  相似文献   

16.
以静止无功发生器工作原理为基础,在d-q坐标系下结合对称分量法思想分别对系统a相电压的正、负序分量进行锁相,进而求解出负载电流在正、负相序下的有功及无功电流值,避免了传统锁相环技术下由于三相电压不对称所造成的锁相角度误差问题;采用积分滤波法来代替传统的低通滤波方式进行直流信号提取,当系统三相不对称时,首先需要对各相电流逐一化简,然后进行积分滤波处理,降低了系统的固有延时。最后,按照上述改进方案在MATLAB环境下搭建无功补偿系统仿真模型,通过对基波电流提取实验的分析及无功补偿效果实验验证得出:改进的静止无功补偿系统能够完成对无功电流实时检测,系统检测延时时间小于0.02s,较传统检测模型延迟时间下降60%;当系统加入静止无功补偿电路后,其功率因数可在一个电源周期内提高到95%以上。  相似文献   

17.
介绍了有源滤波器的基本工作原理,提出了1种新颖的基于小波变换的谐波和基波无功电流的检测方法.与傅里叶变换法仿真结果对比可知,小波变换是1种实时检测谐波及无功电流的更有效的方法.  相似文献   

18.
一种改进型谐波与无功电流检测方法的仿真研究   总被引:2,自引:4,他引:2  
对基于瞬时无功功率理论的应用高通滤波器检测高次谐波电流的方法进行了简要分析 ,继而提出一种新的改进型检测方法 ,即省去无功电流通道的一个高通滤波器后 ,被检测电流中的高次谐波电流和基波无功电流就能同时被检测出来 利用科学计算软件Matlab对该模型进行计算机仿真研究 ,仿真结果证明了该方法的正确性和可行性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号