首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对动态载荷下行星齿轮传动系统齿面磨损问题,考虑了时变啮合刚度和齿廓磨损误差激励的影响,应用势能法求解齿廓磨损情况下的齿轮副啮合刚度,采用集中参数法建立了平移-扭转多自由度齿轮动力学模型,通过Newmar k-β时域积分法求解动态啮合力,基于变形协调原理确定齿间载荷分配系数,依据赫兹接触理论确定齿面接触压力分布,采用有限元方法等转角度离散齿面,基于Archard磨损公式建立了行星齿轮传动系统动态磨损数值仿真模型。通过算例,分析了不同磨损程度的啮合齿面接触压力分布,探讨了负载转矩和磨损次数对磨损的影响以及磨损深度与齿轮系统啮合刚度间的关系。仿真结果表明:磨损后双齿啮合区齿面压力呈"∧"形分布;磨损速率与负载转矩呈正比映射关系,与磨损次数呈指数映射关系;啮合刚度与最大磨损深度呈一次函数关系。该研究结果对行星齿轮传动系统的齿廓修形设计及减磨延寿具有一定的参考意义。  相似文献   

2.
为揭示齿轮传动系统齿面动态磨损特性,通过Weber–Banaschek公式计算获取啮合齿轮对的时变啮合刚度,基于此建立包含非线性齿侧间隙和内部误差激励的齿轮传动系统运动学方程,计算获得系统轮齿啮合时载荷沿啮合线的动态变化规律。根据齿面粗糙度和当前啮合点最小油膜厚度,建立齿面动态磨损系数的表达式。以轮齿的起始啮合点和最终啮合为区间,将渐开线齿廓进行离散化处理,建立离散化的齿面动态磨损模型并对其进行特定参数下的仿真计算。研究结果表明:由于动载荷、动态磨损系数和滑移速度等参数的影响,主从动齿轮齿面累积磨损量沿渐开线齿廓呈现非均匀分布,节点处最小,齿顶处最大;小齿轮的齿面磨损程度比大齿轮更严重;当传动比和模数变化时,齿面累积磨损量均存在变化趋势明显的敏感区域。  相似文献   

3.
研究齿轮裂纹对时变啮合刚度和振动特性的影响机理。首先,将齿轮齿廓分为过渡曲线、渐开线非啮合区和渐开线啮合区3个部分建立精确的齿廓模型,再结合势能法改进时变啮合刚度计算方法。其次,建立齿轮裂纹分析模型,将裂纹扩展路径和有效厚度的限制线分别假设为直线和抛物线,根据几何法和裂纹终止点的位置,改进有效截面积和截面惯性矩的计算方法,求解不同裂纹状态下的时变啮合刚度曲线。最后,建立六自由度裂纹齿轮故障动力学模型,采用龙格-库塔法求解不同裂纹下齿轮传动系统的振动特性和幅频特性,通过小波变换对振动特征进行时频分析。同时,采用统计指标的方法,研究齿轮裂纹对传动系统振动响应的敏感度。研究结果表明:裂纹齿轮在啮合过程中会产生冲击特征,随着裂纹情况的加剧,冲击加剧;峭度对振动响应最为敏感。  相似文献   

4.
为了提高胶印机高速印刷条件下的动态特性,针对胶印机齿轮传动系统动力学问题,建立了多级平行轴齿轮传动系统动力学模型,并对其进行动态优化设计.首先,描述了齿轮传动系统的时变啮合刚度、静态传动误差、啮合阻尼、动态啮合力和滚动轴承刚度表达式,并利用集中参数法建立了多级平行轴齿轮传动系统动力学模型;然后,运用Runge-Kutta法对齿轮传动系统动力学方程进行数值求解;最后,采用序列二次规划法对齿轮系统进行参数优化,并对其进行齿廓修形.数值计算结果表明,优化后齿轮系统的动态特性在啮合刚度、单齿载荷、动态啮合力、动态传动误差和滚筒相对滑动速度方面都有提高,为解决胶印机高速印刷条件下动态特性不良问题开拓了一条新途径.  相似文献   

5.
针对直齿轮磨损问题,考虑到齿轮动态特性对磨损的影响,联合Archard公式和齿轮动力学方程建立了基于动态啮合力的齿轮磨损定量计算模型。基于动力学方程求出动态啮合力,将动态啮合力及滑动系数代入Archard公式计算磨损量;将磨损量视为齿形误差重构齿廓,并重新计算动态啮合力及滑动系数;反复迭代则可得到动态啮合力和磨损量的变化规律。进行齿轮磨损试验,采用光谱仪分析油液中Fe元素浓度变化,得到齿轮磨损量的变化规律及磨损系数K,通过仿真结果与试验结果的对比验证了模型的准确性。最后对齿轮的磨损状态进行仿真预测,结果表明,当主动轮运转5.578×107次后,总磨损量达到2.085 g,动态啮合力峰值超过理论值的4倍,有过载风险;以此作为阈值则可得到齿轮的磨损寿命。仿真模型对于齿轮的磨损寿命预测和抗磨损设计具有重要的工程意义。  相似文献   

6.
针对工业机器人用精密RV减速器齿廓动态磨损难以准确预测的问题,以BX-40E减速器为实例,基于广义Archard磨损公式,通过等效实验求得不同位置条件下减速器的磨损系数,并在磨损预测过程中考虑磨损演化后不同位置条件变化的影响。根据变形协调理论和Langkali-Nikraves接触力模型确定齿间载荷分配与接触压力,考虑时变齿廓磨损与啮合力激励,采用解析建模方法建立了传动系统齿廓动态磨损数值计算模型。对比磨损系数取定值的齿廓磨损曲线,磨损数值与齿面分布规律均存在显著差异,整体差异随磨损次数增加而加剧,得出考虑接触位置条件差异的磨损系数对齿面磨损量化的准确性与必要性。摆线轮、针齿轮的齿面磨损深度曲线沿齿廓呈非对称不规则的倒“W”形,靠近齿根齿顶的部分因磨损而率先脱齿后再啮合,造成冲击,从而出现微突峰。在摆线齿廓凹凸过渡位置几乎不发生磨损。随磨损次数增加磨损峰峰域变窄,磨损率增势非均匀减缓。啮合力与压力角之间成一次函数映射关系。文中研究结果可为提高摆线针齿轮的减磨减振性能提供理论基础。  相似文献   

7.
以人字齿行星齿轮为研究对象,考虑人字齿轮实际结构,基于集中参数理论,建立计入各个构件轴向振动的人字齿轮行星传动广义动力学模型,建模中考虑制造偏心误差和齿廓误差、轴承支撑刚度、轮齿时变啮合刚度和陀螺效应等影响因素.该模型可用于具有不同类型制造误差和任意数目行星轮的人字齿行星传动振动性能分析.采用数值算法求解系统受迫振动响应,分别分析了时域和频域动态响应.以太阳轮制造偏心误差Es为例,着重研究Es对人字齿行星传动动态特性影响规律.结果表明:制造误差Es增强了人字齿行星传动系统中的动态响应以及动态啮合力的波动.  相似文献   

8.
船用齿轮传动的动态优化设计   总被引:4,自引:1,他引:3  
考虑齿轮副的时变啮合刚度、啮合阻尼及轮齿的综合误差,建立了船用齿轮传动系统的动力学模型;将齿轮副接触线长度变化代替齿轮瞬时啮合刚度的变化,啮合阻尼和齿面摩擦等效为粘性阻尼以提高求解效率.并以齿轮的振动加速度和质量为目标函数,对船用齿轮传动进行多目标动态优化,有效降低船用齿轮的振动水平和质量.  相似文献   

9.
基于ADAMS的多级齿轮传动系统动力学仿真   总被引:13,自引:0,他引:13  
为了建立多级齿轮传动系统的虚拟样机,在对传统的齿轮副扭转振动模型进行动力学等价变换的基础上,提出一种基于ADAMS的动力学仿真方法.利用该方法建立的模型能综合考虑时变啮合刚度、啮合阻尼、轮齿啮合综合误差、原动机和负载的动态输入、齿对啮合相位以及传动轴扭转柔性,仿真多级齿轮传动系统的动态特性,通过实例仿真研究了各因素对系统动态响应的影响规律,结果表明该方法是可行的。  相似文献   

10.
当考虑轴承变形时,各齿轮中心位置将发生偏移时,从而使啮合副的啮合角发生变化。传统的行星传动系统动力学建模时,为了降低建模的复杂程度,将啮合角视为常值,因此,所建立的动力学模型不能反映啮合角和重合度变化对系统动态特性的影响。为了分析啮合角对斜齿行星传动系统动态特性的影响,采用齿轮的实际中心位置坐标表示齿轮副的啮合角,建立了一种新的啮合角变化的斜齿行星传动系统动力学模型,并利用Matlab求解计算系统的运动微分方程,得到的系统动态响应。仿真分析结果表明,啮合角变化对行星齿轮系统动态特性有明显的影响。  相似文献   

11.
为考察齿面摩擦对高功率密度齿轮传动效率的影响,提出了一种基于虚拟样机方法的齿轮传动效率预测及动特性分析方法.考虑齿轮和转轴的柔性变形、齿轮时变啮合刚度,建立齿轮、转轴、轴承的柔性多体动力学模型,通过求解动力学方程得到齿轮传动系统的传动效率和动特性,并分析了齿面摩擦对直齿轮、斜齿轮、人字齿轮传动系统传动效率、动态特性的影响规律.结果表明:随着齿面摩擦系数的增加,接触应力增加,动态切向摩擦力变大;在高速工况下,人字齿轮接触应力最小,但传动效率高于斜、直齿轮.  相似文献   

12.
齿轮副是传动系统中的重要部件,齿轮在啮合过程中会出现单、双齿交替参与啮合的情况,造成齿轮啮合刚度周期变化,引起系统振动.齿轮的啮合刚度与齿轮的状态有关,当齿轮出现故障时,齿轮啮合刚度会发生变化,因此通过监测齿轮的啮合刚度就能够估计齿轮副的工作状态.根据齿轮副的动力学模型建立齿轮啮合刚度的离散辨识模型,提出基于扩展卡尔曼滤波器和希尔伯特-黄变换瞬时频率,利用振动信号对齿轮啮合刚度进行估计的动态辨识算法.仿真和实测结果表明,所提出的方法能够跟踪辨识齿轮的啮合刚度,具有较高的辨识精度.  相似文献   

13.
针对大重合度齿轮实际加工齿廓的过渡曲线、齿顶修缘、齿厚均与理想齿廓有所不同,对其啮合时变刚度计算方法进行了研究,建立了凸角修缘类型滚刀参数方程,依据齿轮啮合原理,推导剃(磨)齿前滚刀参数方程以及剃(磨)齿后齿轮齿廓的参数方程,结合现有计算大重合度齿轮时变啮合刚度的能量法,设计了改进势能法模型.根据齿廓参数方程编制了大重合度齿轮模拟软件,基于有限元软件计算出齿轮时变啮合刚度.将改进势能法模型与有限元法模型求解出来的结果进行对比,得出改进势能法模型的计算结果与有限元分析结果有较好的一致性,证明了所提出的改进势能法模型具有有效性.利用改进势能法模型研究了齿厚、过渡曲线、齿顶修缘对单齿啮合刚度最大值以及时变啮合刚度均值的影响.结果表明:齿厚对单齿啮合刚度最大值以及时变啮合刚度均值影响较大;过渡曲线部分主要的影响参数——凸角凸出部分径向高度、凸角径向高度、滚刀齿顶圆弧的半径对单齿啮合刚度最大值以及时变啮合刚度均值影响较小;齿顶修缘参数中的加工滚刀的修缘高和修缘角对单齿啮合刚度最大值的影响较小,但是对齿轮啮合刚度均值影响较大.  相似文献   

14.
为了寻求与实际更为符合的直齿圆柱齿轮磨损量计算方法,基于单双齿交替啮合和磨损后轮廓形状改变对齿间载荷的影响,推导了相邻2对轮齿在共同承担载荷时的动态载荷分配公式,得到了啮合轮齿的齿间动态载荷;基于Winkler弹性模型和轮齿啮合原理,获得了磨损量计算所需要的压力分布及啮合速度;基于Archard磨损模型,推导了齿轮的磨损量计算模型。算例显示:随着磨损次数的增加,磨损量逐渐增大;齿根处磨损最为剧烈,单双齿转换处的磨损有缓慢微幅波动;磨损与载荷耦合增加;在考虑载荷分配后,最大磨损量大幅减小。研究表明,计算齿轮磨损需考虑齿轮间动态载荷的分配问题。  相似文献   

15.
修形齿轮的最佳修形量和修形长度的确定   总被引:4,自引:1,他引:4  
建立了齿轮动态分析的数学模型,在齿轮振动模型中考虑了轮齿刚度的变化、齿轮误差和齿廓修形,用数值法求解了振动微分方程式,计算出齿轮动态响应,在动态分析的基础上建立了齿轮动态性能优化数学模型,以齿轮动态性能最优为目标,采用优化设计方法,确定最佳齿廓修形量和修形长度。  相似文献   

16.
除考虑齿轮的齿侧间隙、时变啮合刚度、综合啮合误差和轴承纵向响应外,还考虑了由扭矩波动引起的低频外激励和齿轮阻尼比、齿侧间隙、激励频率、啮合刚度的随机扰动,根据牛顿定律建立了单对三自由度直齿齿轮传动系统的动力学方程.利用系统的分岔图、相图、时间历程图、Poincaré映射图、李雅普诺夫指数和功率谱图分析了齿轮传动系统在齿轮时变啮合刚度变化下的动力学特性,以及啮合刚度的随机扰动对系统动力学的影响.数值仿真表明,随着齿轮时变啮合刚度的增大,齿轮传动系统从周期运动通过倍化分岔通向混沌运动;在啮合刚度的随机扰动不是很大时,系统解的周期结构不会发生大的变化.  相似文献   

17.
建立了含中心件平移振动的拉威娜式复合行星齿轮传动系统非线性动力学模型,推导了构件间相对位移并建立了系统的运动微分方程组.采用数值积分法对方程组进行求解,得到了系统的非线性动态响应结果.综合运用分岔图、时间历程曲线、相空间轨线、庞加莱截面与功率谱分析了激励频率对系统分岔与混沌特性的影响.结果表明:齿侧间隙与时变啮合刚度等非线性因素的耦合使得复合行星齿轮传动系统内部具有丰富的非线性动力学行为;增大系统啮合阻尼比可以使系统逐渐摆脱混沌状态,进入稳定的周期运动.  相似文献   

18.
面齿轮传动系统参数激励振动特性分析   总被引:3,自引:0,他引:3  
为研究各参数对面齿轮传动系统动态特性的影响,建立了包含齿侧间隙、传动误差、时变啮合刚度、阻尼、支承和外激励等参数的系统弯扭耦合非线性动力学模型,结合非线性动力学数值分析理论求解并得到了系统在不同参数下的分岔特性。计算结果表明,增加齿侧间隙、时变啮合刚度和传动误差会导致系统动载荷明显增大,而增加啮合阻尼则能有效降低系统的动载荷。  相似文献   

19.
时变啮合刚度是影响齿轮传动振动特性的重要参数,常用于基于振动的齿轮传动裂纹诊断。为深入研究齿轮裂纹诊断问题,旨在研究齿根裂纹对齿轮传动装置时变啮合刚度的影响。首先,基于齿轮所受转矩和啮合齿轮转角变形量,推导出齿轮传动装置的时变啮合刚度理论模型。然后,以渐开线标准直齿圆柱齿轮为对象,建立含齿根裂纹齿轮传动副有限元模型,提出基于有限元方法的齿轮传动时变啮合刚度计算方法。最后,通过数值算例讨论了一个啮合周期内齿根裂纹对单对轮齿啮合和两对轮齿啮合时啮合刚度的影响。结果表明,两对轮齿啮合时,双裂纹参与啮合不仅降低啮合刚度,而且远大于单裂纹对啮合刚度的影响;与单裂纹参与啮合相比,随着双裂纹的裂纹深度增加,啮合刚度的下降率增大;增加裂纹深度时,两对轮齿啮合时啮合刚度峰值与单裂纹单对齿啮合时啮合刚度峰值的差距缩小;组合裂纹参数下两对轮齿啮合时,因为轮齿参与啮合顺序不同,裂纹深度对齿轮啮合刚度的影响明显不同。研究结论可为基于振动特性的含多裂纹的齿轮传动裂纹诊断提供理论支撑。  相似文献   

20.
分阶式双渐开线齿轮轮齿刚度的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
用有限元方法首次计算分析了分阶式双渐开线齿轮轮齿的刚度、啮合刚度和载荷分配系数,结果表明双渐开线齿轮的刚度、啮合刚度均提高了,而载荷分配系数基本不变;提出直线逼近齿廓曲线近似求解该齿轮刚度的能量积分法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号