首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
针对两种不同意识任务的脑-机接口设计,提出了以方差作为特征的方法和以分类速率作为评价标准之一的新方法.首先深入研究了小波理论,分析了小波包分解中存在的频带交错现象,然后以小波系数和小波包系数的方差作为特征,对C3,C4导联脑电信号分别进行两种特征的提取,最后采用线性支持向量机作为分类器进行分类.结果表明,两种特征对应的最大分类正确率均达到了86.43%,对应时间分别为4.32和4.31 s.因此,以小波方差和小波包方差作为特征是完全可取的;分类速率的提出能同时反映分类正确率和分类时间,为大脑意识任务分类提供了新思路.  相似文献   

2.
脑-之机接口的核心问题之一是通信载体信号的单次提取.在构建脑控拼写器的过程中,通过“模拟自然阅读”诱发模式产生的视觉诱发电位作为人脑与计算机之间的通信载体,采用支持向量机方法进行特征信号的单次识别.为提高识别精度,详细研究了信号时程、时段的选择对模式识别精度的影响.结果表明,信号时程越长分类精度越高,时程达到300ms时,分类精度就可达到最大值(且趋于饱和);信号时段的选择对分类精度亦有较大影响,最佳时段在靶刺激出现后约250~350ms作为起始处.这一结果为提高系统的整体速度与精度打下了基础.  相似文献   

3.
基于稳态视觉诱发电位的脑-机接口实验研究   总被引:3,自引:0,他引:3  
为提取应用于脑-机接口系统的稳态视觉诱发电位信号(SSVEP),运用叠加平均与快速傅里叶变换(FFT)相结合的方法,由其频谱图上得到作为输入信号的稳态视觉诱发电位信号.通过实验确定了叠加平均次数与最佳视觉刺激颜色,并对混合闪光刺激下SSVEP的提取进行了研究.实验结果表明,该方法提取出的SSVEP信号能够反映使用者的控制意图,可应用于脑-机接口系统.  相似文献   

4.
基于P300的脑-机接口: 视觉刺激强度对性能的影响   总被引:1,自引:0,他引:1  
脑-机接口(BCI)是大脑与外部世界直接的交流通道.为了研究视觉刺激强度对基于P300的脑-机接口性能的影响,设计并实现了一种基于5个选择oddball的P300诱发电位范式的脑-机接口系统,并在此系统中研究2种不同强度下视觉刺激(高强度和低强度)下脑-机接口的信息传输率差异.9名受试者参加了实验,每位受试者在高低2种强度视觉刺激下各采集40组数据,数据在预处理后使用支持向量机进行分类,最终的目标识别率分别为84%和81%.平均波形表明在所设计的范式下2种强度视觉刺激均可以诱发出稳健的P300电位,离线分析表明高强度视觉刺激下平均信息传输率可以达到4.9 bit/min, 而低强度视觉刺激下为 4.5 bit/min.  相似文献   

5.
脑机接口中基于小波包最优基的特征抽取   总被引:13,自引:0,他引:13  
在脑机接口研究中,针对脑电特征抽取,提出一种基于小波包最优基分解的方法.依据距离准则,从小波包库中选择一个对分类最优的小波包基;在该小波包基包含的所有分解系数中,抽取部分具有最大可分性的系数作为有效特征;不同通道脑电信号有效特征的结合,构成分类的特征矢量.通过对该特征矢量可分性和识别精度两个性能指标的评估,并与现有分类结果进行比较,表明了所提出方法的有效性.  相似文献   

6.
为了研究如何从无创运动相关脑电中提取运动信息作为上肢主动康复训练的控制命令,通过设计实验,使右手完成左、上、右3个方向的运动,同时采集脑电数据和右手运动信息.通过小波时频分析确认与右手运动相关的脑电频带,并提取其小波分解系数作为特征,采用支持向量机进行特征分类,根据方向识别准确率分析提取特征的有效性.结果表明,运动脑电delta和theta频段的小波系数特征可以有效区分右手不同方向的运动,方向识别准确率的均值接近65%,并且用准备阶段特征分类的结果普遍优于运动阶段特征,因此,在手运动之前诱发的脑电活动含有丰富的运动信息,可用于脑-机接口系统提取上肢主动康复训练的控制命令.  相似文献   

7.
基于Alpha波的异步脑-机接口系统   总被引:1,自引:0,他引:1  
利用Alpha波建立了一个脑-机接口系统,包括脑电数据采集、脑电信号分析、特征提取和分类,并进行了实时在线分析.该脑-机接口系统的工作模式为异步,测试者可以任意选择何时启动系统,并随意选择4个命令中的一个进行输出,是一种更加自然的人机交互方式.实验结果表明,该系统取得了很高的分类正确率,具有很好的实用性.  相似文献   

8.
脑机接口是在大脑与外部设备之间建立的直接交流通道,是脑科学的重要研究领域。目前,单被试脑机接口研究已经较为成熟,关于双脑协作的脑机接口研究还比较少。本文设计实现了一种基于运动想象的双脑协作在线脑机接口系统,利用两套脑电放大器、协同控制技术实现了系统的硬件平台搭建。算法控制部分采用信息论特征提取算法,选取共空间模式的最优空域模式和支持向量机分类,实现了双脑协作控制鼠标移动并到达指定目标。本文采用初始位置到目标位置的实际步长与理论最短步长比评价系统性能,4组(8人)的平均步长比值为1.32。研究提供了一种双脑协作脑机接口的设计方案,可用于协同控制多维度目标、提高信息传输速率、研究脑间同步、团队决策等方面的关键技术,为脑机接口进一步发展提供了新思路。  相似文献   

9.
脑-机接口(brain computer interface,BCI)建立了大脑和非生物设备之间直接的信息交互通道。在认可BCI技术独特应用价值的基础上,进一步整合了身心医学与脑-机接口,强调了“脑与身体”和“脑与环境”的相互支撑关系,提出了脑-器交互(brain-apparatus communication,BAC)框架。对脑-机接口到脑-器交互的发展历程进行了概述,并从脑-器官交互、脑-外部环境交互以及两者融合方面讨论了脑器交互对人类健康的影响。  相似文献   

10.
 脑机接口提供了人脑与外部设备之间的直接通信通道,它的独特之处是不依赖于外周神经和肌肉组织。近年来,脑机接口领域发展迅速,脑机接口研究正在不断扩展,其应用范围也在不断扩大。本文综述了2018年脑机接口领域在系统应用与关键技术方面所取得的重要研究进展,展望了脑机接口智能化、移动化的发展新趋势,并提出脑机接口伦理风险的新思考。  相似文献   

11.
脑-计算机接口系统中诱发脑电信号的小波分析   总被引:2,自引:1,他引:2  
针对特定思维诱发脑电信号的特点,提出一种确定其分布情况及提取其波形的方法·首先采用离散小波变换对脑电信号进行分解,然后使用小波奇异点检测和小波统计分析相结合的方法进行特征分析,确定特定思维诱发脑电信号处于小波变换的哪个尺度上,并根据分析结果重构出诱发脑电信号·结果表明,这种方法能够有效地消除脑电信号中的常见噪声,尤其适用于对诱发脑电信号的提取·  相似文献   

12.
基于共空间模式和神经元网络的脑-机接口信号的识别   总被引:1,自引:0,他引:1  
提出了一种基于共空间模式和LVQ神经元网络对不同意识的脑电信号进行分类的方法.脑电信号是通过电极在头皮表面采集的脑-机接口的控制信号,提取脑电信号特征并对其进行分类,组成不依赖于正常的由外围神经和肌肉组成的输出通路的通讯系统.首先利用小波包分解对原始脑电信号进行预处理,对分解后特定小波包子带的脑电信号进行共空间模式分解,提取最优的特征;然后利用LVQ网络对不同意识任务特征进行分类,实验结果表明,该方法取得了92.7%的平均分类识别率,已经达到脑-机接口实际应用的标准.  相似文献   

13.
基于共空间模式和K近邻分类器的脑-机接口信号分类方法   总被引:1,自引:1,他引:1  
脑-机接口是指在人脑和计算机之间建立的直接的交流和控制通道,它以脑电信号的形式反映人的意识,并转换成控制信号.针对两类运动想象脑电信号的分类问题,提出共空间模式和小波包分解相结合的脑电信号特征提取方法.利用不同小波包对训练集的多路脑电信号进行分解,再用共空间模式算法对不同分解层子带的脑电信号进行特征提取,并采用K近邻分类器对提取到的不同特征进行分类,得到最优小波包函数和小波包子带参数.将结果应用于测试集数据的分类.仿真实验结果表明,选择db4小波包函数和4层小波包分解层,对8个特征点进行分类,可以得到高达96%的正确率.  相似文献   

14.
基于CSP与SVM算法的运动想象脑电信号分类   总被引:7,自引:2,他引:5  
针对基于两种不同意识任务(想象左手运动和想象右手运动)的脑机接口,使用共空间模式(common spatial pattern,CSP)算法对BCI 2003竞赛数据进行特征提取;基于滑动时间窗,利用CSP方法对C3,Cz和C4位置的脑电信号进行处理.利用支持向量机对特征进行分类,获得最大分类正确率82.86%,最佳时间点4.09 s,最大互信息0.47 bit,最大互信息陡度0.431 bit/s.与BCI 2003竞赛结果相比,最大互信息陡度有了显著提高,证明该方法更适合BCI实时系统的要求.  相似文献   

15.
基于EEG小波包子带能量比的疲劳驾驶检测方法   总被引:2,自引:0,他引:2  
驾驶员在从正常驾驶状态向疲劳驾驶状态变化的过程中,其脑电信号中的慢波逐渐增加,快波逐渐减少;针对这一特点,提出了一种基于小波包子带能量比的疲劳驾驶状态检测方法.采集和分析受试者模拟驾驶过程中的脑电信号,利用小波包分解系数计算出β波与慢波的能量比,将其作为疲劳指标F值.实验结果表明,尽管不同受试者的F值存在较大差异,但是对于同一受试者而言,F值随着驾驶时间的延长和疲劳程度的增加而逐渐降低,其相对于正常驾驶状态的衰减程度能够有效反映驾驶人的疲劳程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号