共查询到19条相似文献,搜索用时 78 毫秒
1.
Mg0.9M0.1Ni(M=Cr,Al,Ti,Zr)三元镁基储氢合金的制备及其电化学性能的研究 总被引:1,自引:0,他引:1
用机械合金化法成功地合成了Mg1.9M0.1Ni(M=Cr,Al,Ti,Zr),XRD结果表明,球磨80h后,Mg0.9M—Ni和Mg0.9Al0.1Ni合金已经完全非晶化.对此三元合金体系进行了电化学容量及循环寿命测试以及电化学交流阻抗(mS)测试.结果表明用这几种元素替代Mg后,合金电极的循环寿命有了明显的提高,但是其最高放电容易有所降低,抗腐蚀性能增强;该系列合金电极反应的速度控制步骤是由合金电解液界面间的电荷迁移和氢的扩散联合控制的. 相似文献
2.
采用熔盐覆盖法制备了LaMg12型储氢合金,利用高能球磨对其进行Y2O3的掺杂,采用X射线衍射来分析合金的相结构,利用Land充放电仪测试合金的电化学性能. 结果表明:Y2O3掺杂能改善LaMg12储氢合金的电化学性能,其中球磨20 h对首次放电容量改善最明显,球磨40 h对循环性能影响最大. 综合而言,球磨40 h对合金性能的改善效果最好. 相似文献
3.
用KOH碱液处理储氢合金ZrV0.5Mn0.5Ni,讨论碱液浓度、温度、浸泡时间对合金活化性能的影响。实验发现:储氢合金电极的活化性能随碱液浓度增大、温度升高以及浸泡时间的延长得到改善,主要由于KOH的强腐蚀性使合金表面由富Zr层转化为富Ni层,为氢的吸附离解起到催化作用,总结出最佳KOH处理液的实验参数:6mol/L、80℃、浸泡24h,在此条件下合金电极循环两周即达到最大放电容量。 相似文献
4.
采用磁悬浮感应熔炼法和快淬法制备了Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3稀土储氢合金,系统研究了快淬速度对合金微结构和电化学性能的影响.X射线衍射(XRD)及扫描电镜(SEM)分析表明,快淬态合金中出现了新相LaNi3和La2Ni3,且LaNi3和La2Ni3相含量随快淬速度的增大而增大.电化学性能测试表明,合金的放电特性和最大放电容量随快淬速度的增大呈现出先变好后变坏的变化规律,15m/s快淬态合金的放电特性和最大放电容量达到最佳.此外,恰当的快淬速度能明显改善合金的循环稳定性. 相似文献
5.
低压力AB5型储氢合金的研究 总被引:1,自引:0,他引:1
目的是利用我国丰富稀土资源来开发具有较低压力AB,型储氢合金,且具有较大的储氢量和良好的动力学、热力学性能。利用Mn、Al、Cr等原子半径较大的元素置换B侧Ni,使得晶格扩大,可以降低合金的离解压。在A侧,采用高镧含量的混合稀土可以得到储氢性能(平衡压力低)和活化性能更好的、符合研究要求的稀土储氢合金。 相似文献
6.
采用Miedema、Toop模型计算AB5型三元储氢电极合金的生成焓,以此结果为依据,选择合理的储氢使合金实现HDDR行为,并通过实验得到了验证。 相似文献
7.
采用化学还原共沉积法制备了Sn-Sb-Co复合材料,用SEM对其形貌进行表征.根据充放电曲线、循环伏安曲线和交流阻抗谱,探讨了材料的嵌/脱锂行为.热处理后的Sn-Sb-Co复合材料呈不均匀粒状的无定形态结构;Sn-Sb-Co复合电极首次充、放电比容量分别为618,1 325 mAh/g,第20循环的可逆比容量为390 mAh/g,库仑效率为92%. 相似文献
8.
在不同成型压力下制备了Mm(NiCoMnAl)5/5%Mg2Ni复合储氢合金电极,研究了成型压力对合金电极的活化性能、最大放电容量、放电特性、循环稳定性和高倍率放电性能的影响规律.结果表明,成型压力对合金电极的活化性能基本无影响,合金电极的最大放电容量、放电特性和循环稳定性随成型压力的增大均呈现出先增大后减小的变化规律,合金电极的高倍率放电性能随成型压力的增大而变小.综合考虑,在成型压力为11t时,合金电极展示了最佳的综合电化学性能,电化学性能的改善主要归因于合金电极的电荷转移速度的加快. 相似文献
9.
研究了酸化镀铜表面复合处理对AB3型贮氢合金La0.88Mg0.12Ni2.95Mn0.10Co0.55Al0.10电化学性能的影响.经酸化镀铜复合表面处理后,AB3型贮氢合金的初始活化性能、倍率放电性能和循环稳定性均得到明显提高,C1xp/Cmxp从61.1%提高到75%左右,在0.2C和5C放电电流密度下合金的HRD分别提高7.0%和12.8%,合金电极在100周时的容量保持率S100从91%升高到93%以上.合金表面镀覆的铜层对合金内部金属元素的保护作用有效地改善了AB3型贮氢合金的电化学性能.酸化镀铜复合表面处理实现了酸处理和表面镀铜在同一处理液中一步完成,是一种简单方便的表面改性处理方法. 相似文献
10.
在Ar气保护下,采用悬浮熔炼方法制备Ml0.75 Mg0.25 Ni3.5 -xAlx(x=0.05 ~0.25)合金,系统研究Al部分取代Ni对合金的相结构、吸放氢性能和电化学性能的影响.结果表明,合金的相结构主要由具有六方CaCu5结构的(La,Pr) Ni5相、(La,Pr) Mg2Ni9相和(La,Nd)2 N... 相似文献
11.
对贮氢合金MlNi3.55+xCo0.75Al0.3Mn0.4(0≤x≤0.6)的结构、组织、电化学性能和P-C-T特性进行了研究.结果表明,除了x=0.6的合金外,随着x的增大合金的点阵常数a值减小、c值增大,c/a值和单胞体积也随之增大,而x=0.6时合金体积反而减小.同时随着x的增大,合金中Ni并没有出现明显偏析,而是促进了B侧其它合金元素尤其是Mn和Al的偏析.x的增大,放电容量降低,充放电循环稳定性只略有下降,但活化性能却明显改善,P-C-T曲线平台压升高. 相似文献
12.
研究了热处理时间对贮氢电极合金La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2的微结构与电化学性能的影响。XRD分析结果表明,所有合金均由(La,Mg)Ni3与LaNi5两相构成,热处理并没有使该贮氢合金发生相变。电化学研究结果表明,随着热处理时间的延长,合金电极的最大放电容量与循环稳定性能均得到明显改善,而高倍率放电性能却逐渐恶化。 相似文献
13.
本文通过超声分散、水热生长和煅烧方法制备了新型蜂窝结构Si/Co3O4复合负极材料,在此基础上研究其复合结构与电化学性能的关系。采用X射线衍(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的物相、微观形貌进行表征,并采用电化学手段对其性能进行测试。结果表明:硅纳米颗粒主要分布于Co3O4蜂窝孔洞结构的内层;相比于纯Si负极材料,蜂窝结构Si/Co3O4复合材料具有更好的结构稳定性、倍率性能和循环性能,首次放电比容量为1475 mAh g-1,第二次维持在851 mAh g-1,经过75 次循环后放电比容量仍有 802 mAh g-1,较第二次比容量损失率仅为0.17%/周,这主要是归因于硅纳米颗粒和Co3O4之间存的空隙为Si负极嵌锂过程中的体积膨胀提供了空间,有效缓冲Si负极的体积变化。 相似文献
14.
研究了热处理时间对贮氢电极合金La0. 7 Mg0. 3 Ni2. 45 Co0. 75 Mn0. 1 Al0. 2的微结构与电化学性能的影响。XRD分析结果表明,所有合金均由(La,Mg)Ni3与LaNi5两相构成,热处理并没有使该贮氢合金发生相变。电化学研究结果表明,随着热处理时间的延长,合金电极的最大放电容量与循环稳定性能均得到明显改善,而高倍率放电性能却逐渐恶化。 相似文献
15.
为设计和筛选高性能贮氢合金,对影响氢化物电极放电过程的因素进行理论研究,根据氢化物电极的结构及放电过程,推导出多孔氢化物电极的极化方程.实验结果表明,在制备氢化物电极时,应注意选择贮氢合金颗粒尺寸和填充密度来增大单位体积反应层中的反应表面积和缩短氢扩散距离,以降低氢浓差极化程度;注意添加催化剂,降低电化学极化程度;并添加导电剂,以降低电极的电阻极化程度 相似文献
16.
Mg-Ni基储氢合金以其比容量高、成本低而倍受关注.采用感应熔炼法,在不高于900 ℃的温度下成功制备出Mg2Ni合金,X射线衍射及金相组织分析表明,合金中主相为Mg2Ni.对制备出的Mg2Ni合金进行气态吸放氢性能测试,结果表明,经粉碎后的合金粉体经第1次活化,吸氢量为3.15 wt%,2次活化后吸氢量达到3.49 wt%,接近其理论值,而合金块体在第2次活化后的吸氢量远小于合金粉体的吸氢量,且第3次活化后未见明显增大. 相似文献
17.
采用球磨复合+烧结处理(BMS)及机械复合+烧结处理(MMS)两种方法制备了Zr0.9Ti0.1(Ni0.57V0.10Mn0.28Co0.05)2.1 X%Mg(X=10,20)锆基纳米复合储氢材料·经XRD、TEM SAED分析表明,BMS和MMS的复合储氢材料皆由MgCu2型立方结构的单一C15 Laves相Zr基合金和密排六方结构的Mg金属构成,未发现两者之间的合金化效应·电化学测试表明,在60mA/g电流密度下,复合材料(MMS、BMS)活化性能好·MMS电极的最大放电容量为410mAh/g(X=20),而BMS的放电容量为360mAh/g(X=20)·在大电流密度下(≥3000mA... 相似文献
18.
雾化贮氢合金的电化学和表面特性 总被引:1,自引:0,他引:1
盐酸处理显著改善了雾化合金MlNi36Co07Mn03Al04的初期电化学吸放氢特性和循环伏安特性;用复数非线性拟合程序分析了氢化物电极的电化学阻抗;XPS和AES分析表明,盐酸处理后合金表面形成了富镍层·充电过程中镍被还原成高活性金属镍是雾化合金电化学性能得以改善的主要原因 相似文献
19.
采用电化学方法在金电极上修饰六氰合铁酸钴(Cobalt Hexacynoferrate,CoHCF),研究了CoHCF/Au修饰电极的电化学性质.该修饰电极在0.75 V电位下可催化氧化过氧化氢,在0.1~400.0μmol/L浓度范围内,氧化峰电流随过氧化氢浓度的增加而增加,对过氧化氢的检测限可达5.0×10-8mol/L. 相似文献