首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
用大鼠心肌条件培养基建立来源于C57BL/6J小鼠的ES细胞系   总被引:7,自引:0,他引:7  
报道一种新的建立C57BL/6J小鼠ES细胞系的方法。采用大鼠心肌条件培养基,在不使用饲养层细胞和白血病抑制因子(LIF)的情况下,从C57BL/6J品系小鼠中建成1个ES细胞系即MESPU 41,成系率为1.0%。MESPU 41细胞为XX型,核型正常率高达89%,表现出XX型ES细胞系少有的稳定性。进行体内分化实验时MESPU 41细胞能发生广泛分化形成畸胎瘤。嵌合体制作实验证实MESPU 41细胞具有嵌合能力,能参与胚胎的发育。采用RT-PCR方法,检测出大鼠心肌细胞有LIF mRNA的表达,这可能与其条件培养基保持ES细胞未分化状态并使X染色体稳定有关。同时,还对大鼠心肌细胞进行了永生化的尝试,共得到了4个永生化克隆,这将进一步简化ES细胞建系和培养工作,为进一步研究ES细胞在体外培养过程中的稳定性开创了新的起点。  相似文献   

2.
哺乳动物胚胎干细胞的特性及利用   总被引:2,自引:0,他引:2  
哺乳动物胚胎干细胞(ES细胞)是由动物早期胚胎发育的内细胞团(ICM)或原始生殖细胞(PGC)分离得到的。人们利用ES细胞所具有的全能性、体外分化以及稳定的遗传性能等特点,展示了ES细胞在建立哺乳动物的早期胚胎体外分化模型、转基因动物模型、器官和组织的修复和移植治疗、克隆动物的生产、发育生物学的研究等方面广阔的应用前景。但是,由于哺乳动物错综复杂的基因调控和环境因素的影响,对于胚胎干细胞的研究还存在诸多问题,还需作更深入细致的研究。  相似文献   

3.
胚胎干细胞(ESCs)来源于早期胚胎内细胞群,具有分化和发育多能性和无限增殖与更新能力。组蛋白修饰对ES细胞的自我更新和无限增殖能力及多能性保持具有重要作用。组蛋白修饰是表观遗传调控的关键因素,细胞通过表观遗传状态改变控制基因的选择性表达,实现对细胞分化的调控。并且可以建立调控网络调节ES细胞多能性维持。  相似文献   

4.
心肌细胞是研究心血管疾病的重要工具之一,但是人类心肌细胞较难获得和培养.为人类胚胎干细胞诱导分化成心肌细胞提供一个有用的实验方法和鉴定方案.人胚胎干细胞以其多向分化的特性为体外研究提供了细胞资源.在人胚胎干细胞诱导分化为心肌细胞的过程中,通过荧光定量聚合酶链式反应(polymerase chain reaction,PCR)检测发现,在分化过程中干细胞标记物Cripto,Dnmt3b,Wnt3,KIF4,Oct4,SOX2和Nanog表达下降,心肌特异性结构蛋白cTnT和α-actinin以及心脏前体细胞分化标记物Nkx2.5表达上升.分化完成后用免疫荧光检测心肌特异性结构蛋白Tnn T2和α-actinin,通过分析Tnn T2阳性细胞的比例,α-actinin阳性细胞的比例,以及Tnn T2和α-actinin双阳性细胞的比例发现,在所提出的胚胎干细胞诱导分化体系中,三者比例分别为90.80%,91.00%,90.91%,表明在此诱导分化条件下人胚胎干细胞可成功分化成为心肌细胞.成功建立了人胚胎干细胞来源的心肌细胞模型以及基于标记物荧光定量PCR及免疫荧光系统检测的鉴定方案,为未来心血管疾病的基础研究及心脏毒性药物检测奠定了一定的基础.  相似文献   

5.
指出了胚胎干细胞(ES细胞)是一类可进行自我复制和更新并向骨骼、软骨、脂肪、神经、肌肉等多个胚层的组织分化的细胞.研究表明:ES细胞移植入缺血心脏后可以分化形成新生心肌细胞,血管内皮细胞等,还可以通过分泌多种生长因子,促进微循环的建立,提高梗死后心脏功能.综述了中药如黄芩苷、葛根素、淫羊藿苷、黄芪、丹参、皂苷、双龙方等诱导小鼠干细胞分化为心肌细胞的研究进展.  相似文献   

6.
用免疫外科法从小鼠孤雌生殖胚胎分离胚胎干细胞,并研究了其在体内、体外的分化潜能.结果发现:从小鼠孤雌生殖的胚胎中可分离出胚胎干细胞(pES),可以传代培养25代,能表达很强的碱性磷酸酶,核型稳定呈40XX.培养至第18代的pES在体内可诱导肿瘤形成,并可分化为三个胚层的组织细胞.免疫组化结果显示:神经细胞特异性烯醇化酶(NSE)、肌肉特异性肌动蛋白?-actin均呈阳性,表明分离培养的pES在体内可至少分化为来自外胚层和中胚层的组织细胞.传至第20~24代的pES细胞,经体外定向诱导分化,可定向分化为节律性收缩的心肌细胞及神经细胞.免疫组化检测显示节律性收缩的心肌细胞表达?-actin,而神经细胞表达NSE.结果表明:利用免疫外科法可从孤雌生殖的小鼠胚胎建立pES,这些pES在体内、体外都具有分化为多种类型细胞的潜能.  相似文献   

7.
胚胎干细胞的体外定向诱导分化研究已成为发育生物学和临床细胞移植治疗的研究热点.本文介绍了胚胎干细胞向多种组织细胞分化的研究情况及未来研究前景,并分析了胚胎干细胞应用方面主要存在的问题.  相似文献   

8.
Wnt信号通路是调控心肌细胞分化和心脏发育的重要信号通路.在哺乳动物中,迄今已发现19个分泌性Wnt蛋白,10个Frizzled受体和多个拮抗分子,显示Wnt信号家族效应广泛复杂.Wnt通路大致分为β-catenin依赖的经典通路和β-catenin非依赖的非经典通路,二者均在心脏发育中发挥重要的作用,广泛调控心肌细胞的增殖、分化、黏附、迁移和极化等.研究发现,Wnt信号通路在心肌细胞分化进程中存在明显的阶段特异性效应,呈现典型的双相性作用.通过小分子或转基因等调制Wnt信号通路,可有效提高体外多能干细胞向心肌的诱导分化效率.  相似文献   

9.
杨涛 《科技潮》2002,(5):52-54
干细胞的研究进展干细胞(stem cells)是一类具有自我复制能力(self-renewing)的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。根据其发育阶段,干细胞分为胚胎干细胞和成体干细胞。胚胎干细胞的分化和增殖构成动物发育的基础。即由单个受精卵发育成为具有各种组织器官的个体;成体干细胞的进一步分化则是成年动物体内组织和器官修复再生的基础。而所谓的干细胞生物工程是指在体外对干细胞进行操作,包括体外增殖、定向诱导分化、基因修饰和组织成形等。  相似文献   

10.
目的:介绍骨髓间充质干细胞向心肌细胞分化的研究进展.方法:综合分析近年来国内外相关文献资料.结果:骨髓间充质干细胞在体内、外均可分化为心肌细胞.结论:骨髓间充质干细胞有望成为心衰干细胞移植治疗的理想细胞材料.  相似文献   

11.
To investigate the potential of cardiomyogenic differentiation of rat hone marrow stromal cells (MSCs), they were exposed to 5-azacytidine treatments (single/repeat) at varying concentrations (3, 5, 10μmol/L) and the fates of the cells were analyzed by immunocytochemistry, Western blot and the reporter gene of enhanced cyan fluorescent protein (ECFP) under the control of ventricular myosin light chain 2 (MLC2v) promoter. MSCs were also cocultured with cardiomyocytes for periods up to 16 days, and the expression of cardiac myosin heavy chain(MHC) and troponin Ⅰ (Tn I) proteins was analyzed. After the induction with 5-azacytidine, neither spontaneously beating ceils nor myotubes were found; MHC and Tn I proteins were also undetectable and no ECFP-positive MSCs were detected. But when cocultured with cardiomyocytes, spontaneously contracting MSCs were observed and cardiac specific proteins could be detected. The results proved that the novel effects of 5-azacytldine on the cardiomyogenic differentiation of MSCs should be questioned and a direct intercellular communication with cardiomyocytes is necessary for MSCs to differentiate into cardiomyocytes.  相似文献   

12.
Properties and applications of embryonic stem cells   总被引:1,自引:0,他引:1  
Mouse embryonic stem (ES) cells are pluripotent cells derived from the early embryo and can be propagated stably in undifferentiated state in vitro. They retain the ability to differentiate into all cell types found in the embryonic and adult body in vivo, and can be induced to differentiate into many cell types under appropriate culture conditions in vitro. Using these properties, people have set up various differentiated systems of many cell types and tissues in vitro. Through analysis of these systems, one can identify novel bioactive factors and reveal mechanisms of cell differentiation and organogenesis. ES cell-derived differentiated cells can also be applied to cell transplantation therapy. In addition, we summarized the features and potential applications of human ES cells.  相似文献   

13.
The nucleus of a somatic cell could be dedifferentiated and reprogrammed in an enucleated heterogeneous oocyte. Some reconstructed oocytes could develop into blastocysts in vitro, and a few could develop into term normally after transferred into foster mothers, but most of cloning embryos fail to develop to term. In order to evaluate the efficacy of embryonic stem cell as nucleus donor in interspecific animal cloning, we reconstructed enucleated rabbit oocytes with nuclei from mouse ES cells, and analyzed the developmental ability of reconstructed embryos in vitro. Two kinds of fibroblast cells were used as donor control, one derived from ear skin of an adult Kunming albino mouse, and the other derived from a mouse fetus. Three types of cells were transferred into perivitelline space under zona pellucida of rabbit oocytes respectively. The reconstructed oocytes were fused and activated by electric pulses, and cultured in vitro. The developmental rate of reconstructed oocytes derived from embryonic stem cells was 16.1%, which was significantly higher than that of both the adult mouse fibroblast cells (0%-3.1%, P < 0.05) and fetus mouse fibroblast cells (2.1%-3.7%, P < 0.05). Chromosome analysis confirmed that blastocyst cells were derived from ES donor cell. These observations show that reprogramming is easier in interspecific embryos reconstructed with ES cells than that reconstructed with somatic cells, and that ES cells have the higher ability to direct the reconstructed embryos development normally than fibroblast cells.  相似文献   

14.
15.
In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.  相似文献   

16.
报道了携带人生长激素基因(hGH)的逆转录病毒载体pINS-GH导入小鼠胚胎干细胞(ES细胞)CCE后,虽然用放射免疫法未检测到hGH基因的表达,但是,Southern杂交的结果表明,hGH基因的确已经整合到细胞基因组中。对转化的ES细胞克隆进行了体内外分化能力及嵌合能力的检验,结果表明,经过一系列体外操作的ES细胞,仍具有分化成多种细胞类型的能力。转化的ES细胞通过显微注射注入囊胚后,能参与受体  相似文献   

17.
In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright’s staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34CD38+. Wright’s staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.  相似文献   

18.
Control of ground-state pluripotency by allelic regulation of Nanog   总被引:1,自引:0,他引:1  
Miyanari Y  Torres-Padilla ME 《Nature》2012,483(7390):470-473
Pluripotency is established through genome-wide reprogramming during mammalian pre-implantation development, resulting in the formation of the naive epiblast. Reprogramming involves both the resetting of epigenetic marks and the activation of pluripotent-cell-specific genes such as Nanog and Oct4 (also known as Pou5f1). The tight regulation of these genes is crucial for reprogramming, but the mechanisms that regulate their expression in vivo have not been uncovered. Here we show that Nanog--but not Oct4--is monoallelically expressed in early pre-implantation embryos. Nanog then undergoes a progressive switch to biallelic expression during the transition towards ground-state pluripotency in the naive epiblast of the late blastocyst. Embryonic stem (ES) cells grown in leukaemia inhibitory factor (LIF) and serum express Nanog mainly monoallelically and show asynchronous replication of the Nanog locus, a feature of monoallelically expressed genes, but ES cells activate both alleles when cultured under 2i conditions, which mimic the pluripotent ground state in vitro. Live-cell imaging with reporter ES cells confirmed the allelic expression of Nanog and revealed allelic switching. The allelic expression of Nanog is regulated through the fibroblast growth factor-extracellular signal-regulated kinase signalling pathway, and it is accompanied by chromatin changes at the proximal promoter but occurs independently of DNA methylation. Nanog-heterozygous blastocysts have fewer inner-cell-mass derivatives and delayed primitive endoderm formation, indicating a role for the biallelic expression of Nanog in the timely maturation of the inner cell mass into a fully reprogrammed pluripotent epiblast. We suggest that the tight regulation of Nanog dose at the chromosome level is necessary for the acquisition of ground-state pluripotency during development. Our data highlight an unexpected role for allelic expression in controlling the dose of pluripotency factors in vivo, adding an extra level to the regulation of reprogramming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号