共查询到18条相似文献,搜索用时 62 毫秒
1.
采用原位分析法及化学浸泡法并结合扫描电镜和能谱仪分析,对316L不锈钢中三种典型铬硅锰氧化物夹杂诱发不锈钢点蚀行为进行分析,并探究其腐蚀机理。结果表明,在质量分数为6%的FeCl_3溶液浸泡腐蚀下,316L不锈钢中三种典型铬硅锰氧化物夹杂耐蚀性从大到小的顺序依次为:单一贫铬相(w(Cr)15%)铬硅锰氧化物夹杂单一富铬相(w(Cr)15%)铬硅锰氧化物夹杂MnS与铬硅锰氧化物复合相夹杂;单一相夹杂诱发的点蚀是以小孔腐蚀的形式始发于夹杂物内部,其部位靠近夹杂与基体界面处;而对于MnS与铬硅锰氧化物复合相夹杂诱发的点蚀,首先是夹杂外层包裹的硫化物在较短时间内发生溶解,使得夹杂与基体交界处产生微缝隙,进而导致不锈钢点蚀的产生;铬硅锰氧化物夹杂中铬含量过高(w(Cr)15%)或过低(w(Cr)6%),均会降低不锈钢的抗腐蚀性能。 相似文献
2.
胡礼木 《陕西理工学院学报(自然科学版)》1999,15(2):1-5
本文对瑞典产五种双相不锈钢和超级双相不锈钢钢筋电阻对焊接头的抗点蚀性能进行了研究。发现双相不锈钢电阻对焊接头的抗点蚀性能与对应母材相比有一定程度下降,下降范围在10°C以内。超级双相不锈钢电阻对焊接头的抗点蚀性能几乎与母材的相同,高达65~68°C,且热影响区窄,晶粒长大倾向小,表现出极好的抗点蚀性和焊接性。文章对电阻对焊接头性能变化的原因从化学成分和显微组织方面进行了分析。 相似文献
3.
合金元素对316 LN 不锈钢的力学性能和点蚀性能的影响 总被引:1,自引:0,他引:1
研究了N、Cr、Mo和Ni四种合金元素含量的变化对核电主管道用固溶态316LN不锈钢的晶粒尺寸以及常规力学性能和点蚀性能的影响.随着N含量的升高,316LN的晶粒明显细化,其在固溶处理过程中晶粒长大趋势也减小. N含量的升高可改善316LN的力学性能和耐点蚀性能,但是当N质量分数达到0.20%时,其耐点蚀性能又开始变差.晶粒细化对316LN强度的影响远小于N含量对316LN强度的影响. Cr及Ni含量对316LN的晶粒尺寸及抗拉强度、屈服强度等力学性能影响不大;Cr含量增加可轻微改善316LN的抗点蚀能力,Ni元素对316LN的耐点蚀性能影响不大,但可增大钝态的腐蚀速度从而不利于钝化膜的稳定.随Mo含量增加,316LN的晶粒尺寸略有减小,强度增大,延伸率显著降低,耐点蚀能力改善. 相似文献
4.
金属等离子体浸没Ta+和Ti+离子注入 总被引:2,自引:0,他引:2
采用由阴极真空孤等离子体源、负脉冲高压靶台和磁过滤系统组成的金属等离子体浸没注入系统,实现Ta^+和Ti^+浸没注入,并对离子注入层予以表征。结果表明,等离子体浸没离子注入钽和钛的RBS分析射程,低于按设定加速电压的注入能量计算的TRIM射程。 相似文献
5.
点蚀是不锈钢的主要腐蚀类型之一,常用点蚀电位来评价不锈钢腐蚀的难易程度.点蚀电位会受到多方面因素的影响.基于不锈钢的元素成分和工艺参数,采用支持向量回归(support vector regression,SVR)算法建立了预测点蚀电位的模型.结果表明:独立测试集的相关系数达到0.97,均方根误差(root mean square error,RMSE)仅为0.07;通过Pearson相关分析和敏感性分析,元素Cr、Mo的含量和温度对点蚀电位的影响较大;当存在少量稀土元素时可以提高不锈钢的抗腐蚀能力. 相似文献
6.
7.
钼对铸造双相不锈钢组织及耐点蚀性能的影响 总被引:2,自引:0,他引:2
研究了钼含量对铸造双相不锈钢显微组织及耐点蚀性能的影响。探讨了耐点蚀性能、含钼量、组织彼此之间的关系。结果表明:随钼含量增加,钢中r相含量逐渐减少。当钼含量超过一定量后,组织的均匀程度降低,并存在X相。随钼含量的增加,钢的耐点蚀性能逐渐提高;当钼量超过一定量后,耐点蚀性能明显降低,耐点蚀性能与组织的均匀程度及X相的存在有关。 相似文献
8.
选取了AISI316型奥氏体不锈钢在650-800℃范围内服役时间长达120 000h的管材,通过金相法和EDS分析证明了基材中含有Sigma相。主要研究了不锈钢中的Sigma析出相对AISI316型奥氏体不锈钢在熔融镁合金保护气(SF6)中腐蚀行为的影响。实验结果表明,含有Sig-ma相的316不锈钢实验到200h就发生了严重的晶间腐蚀。腐蚀产物中,首先形成Cr2O3然后连着CrxO3或CrxO4层,最表层是疏松的Fe3O4层与片状结构的Fe3O4和C混合层连接。 相似文献
9.
点蚀是不锈钢的主要腐蚀类型之一, 常用点蚀电位来评价不锈钢腐蚀的难易程度. 点蚀电位会受到多方面因素的影响. 基于不锈钢的元素成分和工艺参数, 采用支持向量回归(support vector regression, SVR)算法建立了预测点蚀电位的模型. 结果表明: 独立测试集的相关系数达到 0.97, 均方根误差(root mean square error, RMSE)仅为 0.07; 通过 Pearson 相关分析和敏感性分析, 元素 Cr、Mo 的含量和温度对点蚀电位的影响较大; 当存在少量稀土元素时可以提高不锈钢的抗腐蚀能力. 相似文献
10.
在常压和真空条件下研究了温度与氮分压对316L不锈钢中氮溶解度的影响,钢中氮的溶解度随着温度的降低而升高,随着氮分压的增大而增大.建立了316L不锈钢氮溶解度热力学计算模型,不同吹氮条件下氮溶解度实测值与热力学模型计算值较吻合.在1773~1873K条件下,生产控氮型316L不锈钢,氮分压要控制在6~28kPa以上;生产中氮型316L不锈钢,氮分压要控制在22~101kPa以上.常压下吹氮10min,钢液含氮量即可超过0.10%. 相似文献
11.
12.
316L不锈钢以其优良的耐腐蚀性能、加工性能和高抗氧化性能而被广泛应用于核电、石油、化工等领域.316L不锈钢的应用大多需要焊接成型,但焊接过程中化学成分,组织形态和相关性能的改变,使316L不锈钢的耐蚀性能降低,在焊缝接头处以及焊缝部位优先发生腐蚀,严重影响了不锈钢的使用寿命和安全性.本文采用交流阻抗法和阳极极化常规电化学方法,结合课题组自主研发的扫描微电极技术研究316L不锈钢焊缝区的腐蚀行为,探讨钨极氩弧焊和CO2保护焊两种不同焊接方法对316L不锈钢抗腐蚀能力的影响以及氯离子浓度对焊接样品抗腐蚀能力的影响.结果表明,经过腐蚀电化学方法检测后,焊接样品的耐腐蚀性能较基材样品均发生明显降低,具体表现为氩弧焊焊接样品和CO2保护焊焊接样品在阳极极化曲线的开裂电位Eb,腐蚀电位Ecorr均较基材样品负,钝化区ΔE较基材样品变窄.交流阻抗谱测试得出氩弧焊焊接样品与CO2保护焊焊接样品的电荷转移电阻Rct均较基材样品小.同时,通过不同实验分析均表明,在NaCl溶液和FeCl3溶液中,氩弧焊焊接样品的耐蚀性能较CO2保护焊焊接样品好.实验结果还表明,随着氯离子浓度的升高,两种焊接样品的耐蚀性能均降低. 相似文献
13.
研究了不锈钢去膜表面在氯化镁介质中的点腐蚀现象。去膜表面发生点蚀的临界电位低于膜覆盖表面发生点蚀的临界电位。去膜表面的点蚀主要在晶界和夹杂起源。点蚀形貌是敏锐的条纹状花样。根据作者提出的裸表面与氯化物介质反应步骤模型讨论了点蚀特征电位的意义以及裸表面点蚀形成的过程。 相似文献
14.
在 80 keV能量下.将不同剂量的氮离子注入到 1Cr18Ni9Ti不锈钢表面;用电 化学及物理表面分析等方法研究了注氮不锈钢在混酸介质中表面耐蚀改性机理。结果 表明:不锈钢经氮离子表面改性注入后,其耐蚀改性能力随注入剂量的不同而差异较 大。适当的氮离子注入使材料的极化电阻提高;维钝电流密度下降;表面有非晶层产 生,使材料耐蚀性大大提高。当注入剂量较大时,表面层形成弥散的氮化物相,导致 耐蚀性下降。 相似文献
15.
316L不锈钢是一种非常典型的奥氏体不锈钢,被广泛地用于石油、化工、电力、交通、航空、航海、能源开发以及轻工、医药等领域,它的耐磨性、耐腐蚀性、疲劳强度和亲水性等表面特性影响了不锈钢的使用。本文列举了传统不锈钢表面改性的常用方法,综述了现今316L不锈钢表面改性的各种途径及研究成果,并且展望了316L不锈钢表面改性的研究趋势。 相似文献
16.
奥氏体不锈钢SUS316Ti的手工焊接接头(焊条A102)承受80%的屈服拉应力,在氧浓度为1.0*10^-4,温度为550℃的液态钠中腐蚀1500h,对试样进行SEM和Auger俄歇能谱分析以及Ar^+的溅射。 相似文献
17.
研究酸洗预处理对高分子涂层在不锈钢表面粘附强度和浸润性的影响,利用SEM、AFM、RA-IR及接触角测试等技术分析了316L不锈钢表面经不同工艺酸处理前后基体表面微结构、化学状态及润湿性的变化。结果表明,适当的酸处理能显著提高聚乙烯一乙烯醇共聚物(EVAL)涂层在316L不锈钢表面的附着力及它在金属表面的浸润性。 相似文献
18.
The martensite transformation induced by tensile elongation and its effect on the behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. The results show that the content of α'-martensite in stainless steel 304 increases with the true strain. As α'-martensite content increased, free corrosion potential and pitting potential of stainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also found that pitting nucleated preferentially at the phase interfaces between martensite and austenite. There existed apparent difference between electrochemical properties of austenite and of martensite for stainless steel 304 and 316L in 3.5% NaCl solution. 相似文献