首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Requirement of the Drosophila raf homologue for torso function   总被引:17,自引:0,他引:17  
L Ambrosio  A P Mahowald  N Perrimon 《Nature》1989,342(6247):288-291
In Drosophila the correct formation of the most anterior and posterior regions of the larva, acron and telson is dependent on the maternally expressed terminal class of genes. In their absence, the anterior head skeleton is truncated and all the structures posterior to the abdominal segment seven are not formed. The protein predicted to be encoded by one of these genes, torso (tor), seems to be a transmembrane protein with an extracytoplasmic domain acting as a receptor and a cytoplasmic domain containing tyrosine kinase activity. Here we report that another member of the terminal-genes class, l(1)polehole (l(1)ph), which is also zygotically expressed, is the Drosophila homologue of the v-raf oncogene and encodes a potential serine-and-threonine kinase. We also show that functional l(1)ph gene product is required for the expression of a gain-of-function tor mutant phenotype, indicating that l(1)ph acts downstream of tor. Together, these results support the idea that the induction of terminal development occurs through a signal transduction system, involving the local activation of the tor-encoded tyrosine kinase at the anterior and posterior egg poles, resulting in the phosphorylation of the l(1)ph gene product. In turn, downstream target proteins may be phosphorylated, ultimately leading to the regionalized expression of zygotic target genes. Such a process is in agreement with the finding that both tor and l(1)ph messenger RNAs are evenly distributed.  相似文献   

2.
The torso (tor) gene, one of six identified maternal genes essential for the development of the anterior and posterior terminal structures in the Drosophila embryo, is likely to function as a transmembrane receptor tyrosine kinase. Although tor protein is uniformly distributed in the membrane of the egg cell and syncytial embryo, genetic and molecular data suggest that tor is locally activated at the ends of the embryo by a ligand present in the perivitelline space. Local activation of tor could be achieved if the ligand were expressed by a subpopulation of the follicle cells that surround the developing oocyte. Here we describe torso-like (tsl), the sixth member of the terminal gene class, and show that it is unique among these genes in that its expression is required in the somatic follicle cells rather than in the germ line. Moreover, mosaic analysis demonstrates that tsl expression is necessary only in subpopulations of follicle cells located at the poles of the oocyte. Thus, the spatially regulated expression of tsl in the follicle cell layer may generate a localized signal that is transduced by tor, ultimately resulting in the formation of the terminal structures of the embryo.  相似文献   

3.
4.
R Finkelstein  N Perrimon 《Nature》1990,346(6283):485-488
In the Drosophila embryo, cell fate along the anterior-posterior axis is determined by maternally expressed genes. The activity of the bicoid (bcd) gene is required for the development of larval head and thoracic structures, and that of maternal torso (tor) for the development of the unsegmented region of the head (acron). In contrast to the case of thoracic and abdominal segmentation, the hierarchy of zygotically expressed genes controlling head development has not been clearly defined. The bcd protein, which is expressed in a gradient, activates zygotic expression of the gap gene hunchback (hb), but hb alone is not sufficient to specify head development. Driever et al. proposed that at least one other bcd-activated gene controls the development of head regions anterior to the hb domain. We report here that the homeobox gene orthodenticle (otd), which is involved in head development, could be such a gene. We also show that otd expression responds to the activity of the maternal tor gene at the anterior pole of the embryo.  相似文献   

5.
<正> 本文记述了密鲴亚科鱼类4属4种,鲤卿亚科鱼类2属2种,现分述如下:I密鲴亚科:咽骨较宽,前后角明显。骨长为骨宽的2.5~4.4倍。体长为骨长的14.3~17.0倍。前肢稍长于后肢。前无齿突顶端尖;后无齿突侧扁,顶端园钝。咽齿1~3列,侧扁,先端尖不带钩,内列齿6~7枚,咀嚼面发达。咽齿1列以上者,外列齿细长而弱,容易  相似文献   

6.
Minami M  Kinoshita N  Kamoshida Y  Tanimoto H  Tabata T 《Nature》1999,398(6724):242-246
Growth and patterning of the Drosophila wing is controlled in part by the long-range organizing activities of the Decapentaplegic protein (Dpp). Dpp is synthesized by cells that line the anterior side of the anterior/posterior compartment border of the wing imaginal disc. From this source, Dpp is thought to generate a concentration gradient that patterns both anterior and posterior compartments. Among the gene targets that it regulates are optomotor blind (omb), spalt (sal), and daughters against dpp (dad). We report here the molecular cloning of brinker (brk), and show that brk expression is repressed by dpp. brk encodes, a protein that negatively regulates Dpp-dependent genes. Expression of brk in Xenopus embryos indicates that brk can also repress the targets of a vertebrate homologue of Dpp, bone morphogenetic protein 4 (BMP-4). The evolutionary conservation of Brk function underscores the importance of its negative role in proportioning Dpp activity.  相似文献   

7.
8.
9.
Function of torso in determining the terminal anlagen of the Drosophila embryo   总被引:10,自引:0,他引:10  
The formation of the unsegmented terminal regions of the Drosophila larva, acron and telson requires the function of at least five maternal genes (terminal genes class). In their absence, the telson and acron are not formed. One of them, torso (tor), has gain-of-function alleles which have an opposite phenotype to the lack-of-function (tor-) alleles: the segmented regions of the larval body, thorax and abdomen, are missing, whereas the acron is not affected and the telson is enlarged. In strong gain-of-function mutants, the pair-rule gene fushi tarazu (ftz) is not expressed, demonstrating the suppression of the segmentation process in an early stage of development. The tor gain-of-function effect is neutralized, and segmentation is restored in double mutants with the zygotic gene tailless (tll), which has a phenotype similar (but not identical) to that of tor-. This suggests that tor acts through tll, and that in the gain-of-function alleles of tor, the tll gene product is ectopically expressed at middle positions of the embryo, where it inhibits the expression of segmentation genes like ftz.  相似文献   

10.
D Tautz 《Nature》1988,332(6161):281-284
Segmentation in the inset embryo is initiated by maternally provided information, which is stored in the developing oocyte. In Drosophila, the genes necessary for this process have been genetically characterized. The anterior segmented region is organized by the bicoid (bcd) gene product. The posterior segmented region is organized by several interacting gene products, among them the oskar (osk) gene product. The first zygotic group of genes, which are thought to respond to the spatial cues provided by the maternal genes, are the gap genes, whose members include hunchback (hb), Krüppel (Kr) and knirps (kni). To elucidate the role played by the maternal genes in expression of the gap gene hb, antibodies were raised against a fusion protein and were used for the cytological localization of the hb gene product in wild-type and mutant embryos. The hb protein is predominantly located in the nucleus. Its spatial expression includes the formation of an anterior-posterior gradient during the early cleavage stages and a strong zygotic expression in the anterior half of the embryo. Analysis of embryos mutant for the maternal genes affecting the anterior-posterior segmentation pattern shows that the formation of the early gradient is controlled by the osk group of genes, whereas efficient activation of the zygotic anterior expression domain is dependent on bcd activity.  相似文献   

11.
Gebelein B  McKay DJ  Mann RS 《Nature》2004,431(7009):653-659
During Drosophila embryogenesis, segments, each with an anterior and posterior compartment, are generated by the segmentation genes while the Hox genes provide each segment with a unique identity. These two processes have been thought to occur independently. Here we show that abdominal Hox proteins work directly with two different segmentation proteins, Sloppy paired and Engrailed, to repress the Hox target gene Distalless in anterior and posterior compartments, respectively. These results suggest that segmentation proteins can function as Hox cofactors and reveal a previously unanticipated use of compartments for gene regulation by Hox proteins. Our results suggest that these two classes of proteins may collaborate to directly control gene expression at many downstream target genes.  相似文献   

12.
Lynch JA  Brent AE  Leaf DS  Pultz MA  Desplan C 《Nature》2006,439(7077):728-732
The Bicoid (Bcd) gradient in Drosophila has long been a model for the action of a morphogen in establishing embryonic polarity. However, it is now clear that bcd is a unique feature of higher Diptera. An evolutionarily ancient gene, orthodenticle (otd), has a bcd-like role in the beetle Tribolium. Unlike the Bcd gradient, which arises by diffusion of protein from an anteriorly localized messenger RNA, the Tribolium Otd gradient forms by translational repression of otd mRNA by a posteriorly localized factor. These differences in gradient formation are correlated with differences in modes of embryonic patterning. Drosophila uses long germ embryogenesis, where the embryo derives from the entire anterior-posterior axis, and all segments are patterned at the blastoderm stage, before gastrulation. In contrast, Tribolium undergoes short germ embryogenesis: the embryo arises from cells in the posterior of the egg, and only anterior segments are patterned at the blastoderm stage, with the remaining segments arising after gastrulation from a growth zone. Here we describe the role of otd in the long germband embryo of the wasp Nasonia vitripennis. We show that Nasonia otd maternal mRNA is localized at both poles of the embryo, and resulting protein gradients pattern both poles. Thus, localized Nasonia otd has two major roles that allow long germ development. It activates anterior targets at the anterior of the egg in a manner reminiscent of the Bcd gradient, and it is required for pre-gastrulation expression of posterior gap genes.  相似文献   

13.
V Irish  R Lehmann  M Akam 《Nature》1989,338(6217):646-648
The development of the body plan in the Drosophila embryo depends on the activity of maternal determinants localized at the anterior and posterior of the egg. These activities define both the polarity of the anterior-posterior (AP) axis and the spatial domains of expression of the zygotic gap genes, which in turn control the subsequent steps in segmentation. The nature and mode of action of one anterior determinant, the bicoid(bcd) gene product, has recently been defined, but the posterior determinants are less well characterized. At least seven maternally acting genes are required for posterior development. Mutations in these maternal posterior-group genes result in embryos lacking all abdominal segments. Cytoplasmic transplantation studies indicate that the maternally encoded product of the nanos(nos) gene may act as an abdominal determinant, whereas the other maternal posterior-group genes appear to be required for the appropriate localization and stabilization of this signal. Here we show that the lack of the nos gene product can be compensated for by eliminating the maternal activity of the gap gene hunchback (hb). Embryos lacking both of these maternally derived gene products are viable and can survive as fertile adults. These results suggest that the nos gene product functions by repressing the activity of the maternal hb products in the posterior of the egg.  相似文献   

14.
M J Pankratz  M Hoch  E Seifert  H J?ckle 《Nature》1989,341(6240):337-340
Segmental pattern formation in Drosophila proceeds in a hierarchical manner whereby the embryo is stepwise divided into progressively finer regions until it reaches its final metameric form. Maternal genes initiate this process by imparting on the egg a distinct antero-posterior polarity and by directing from the two polar centres the activities of the zygotic genes. The anterior system is strictly dependent on the product of the maternal gene bicoid (bcd), without which all pattern elements in the anterior region of the embryo fail to develop. The posterior system seems to lack such a morphogen. Rather, the known posterior maternal determinants simply define the boundaries within which abdominal segmentation can occur, and the process that actively generates the abdominal body pattern may be entirely due to the interactions between the zygotic genes. The most likely candidates among the zygotic genes that could fulfil the role of initiating the posterior pattern-forming process are the gap genes, as they are the first segmentation genes to be expressed in the embryo. Here we describe the interactions between the gap genes Krüppel (Kr), knirps (kni) and tailless (tll). We show that kni expression is repressed by tll activity, whereas it is directly enhanced by Kr activity. Thus, Kr activity is present throughout the domain of kni expression and forms a long-range protein gradient, which in combination with kni activity is required for abdominal segmentation of the embryo.  相似文献   

15.
<正> 本文记述鳊鱼亚科 Abramidinae 鱼类7属12种和亚种,现分述如下:鳊鲌亚科:咽骨一般狭长(鳊属、鲂属例外)。前角明显或不甚明显,后角圆钝。前肢与后肢约等长或略长或略短于后肢。骨长为骨宽的2.5~7.0倍(鳊属、鲂属为2.5~2.9倍)。体长为骨长的11.5~18.7倍。咽齿2~3列,左右数目常不对称,内列4~5齿,中列3~4齿,外列1~2齿,齿适度侧扁,齿面光滑无锯齿(似(鱼乔)具细弱的锯齿),先端钩曲,咀嚼面狭窄,微凹。  相似文献   

16.
Induction of germ cell formation by oskar.   总被引:24,自引:0,他引:24  
A Ephrussi  R Lehmann 《Nature》1992,358(6385):387-392
The oskar gene directs germ plasm assembly and controls the number of germ cell precursors formed at the posterior pole of the Drosophila embryo. Mislocalization of oskar RNA to the anterior pole leads to induction of germ cells at the anterior. Of the eight genes necessary for germ cell formation at the posterior, only three, oskar, vasa and tudor, are essential at an ectopic site.  相似文献   

17.
18.
Bilaterian animals have a Hox gene cluster essential for patterning the main body axis, and a ParaHox gene cluster. Comparison of Hox and ParaHox genes has led workers to postulate that both clusters originated from the duplication of an ancient cluster named ProtoHox, which contained up to four genes with at least the precursors of anterior and posterior Hox/ParaHox genes. However, the way in which genes diversified within the ProtoHox, Hox and ParaHox clusters remains unclear because no systematic study of non-bilaterian animals exists. Here we characterize the full Hox/ParaHox gene complements and genomic organization in two cnidarian species (Nematostella vectensis and Hydra magnipapillata), and suggest a ProtoHox cluster simpler than originally thought on the basis of three arguments. First, both species possess bilaterian-like anterior Hox genes, but their non-anterior genes do not appear as counterparts of either bilaterian central or posterior genes; second, two clustered ParaHox genes, Gsx and a gene related to Xlox and Cdx, are found in Nematostella vectensis; and third, we do not find clear phylogenetic support for a common origin of bilaterian Cdx and posterior genes, which might therefore have appeared after the ProtoHox cluster duplication. Consequently, the ProtoHox cluster might have consisted of only two anterior genes. Non-anterior genes could have appeared independently in the Hox and ParaHox clusters, possibly after the separation of bilaterians and cnidarians.  相似文献   

19.
S Noji  T Nohno  E Koyama  K Muto  K Ohyama  Y Aoki  K Tamura  K Ohsugi  H Ide  S Taniguchi 《Nature》1991,350(6313):83-86
Retinoic acid is a putative morphogen in limb formation in the chick and other vertebrates. In chick limb formation, it is thought that retinoic acid is released from the zone of polarizing activity (ZPA) and the concentration gradient of retinoic acid formed from the posterior to the anterior provides positional cues for digit formation. Implantation of a bead containing retinoic acid at the anterior margin of the limb bud induces a mirror-image symmetrical duplication of the digit pattern similar to that observed when the ZPA is grafted into the anterior margin of the host limb bud. Also, the level of endogenous retinoic acid (25 nM on average) is higher in the posterior one third of the limb bud. We found that when the bead containing either retinoic acid or an analogue but not the ZPA, was implanted in the anterior margin of the chick limb bud, expression of the retinoic acid receptor type-beta gene was induced around the bead within 4 h. These results indicate that exogenous retinoic acid is not identical with the ZPA morphogen. As the anterior tissue exposed to retinoic acid has polarizing activity, we conclude that the primary function of exogenous retinoic acid is to induce polarizing activity in the limb bud.  相似文献   

20.
Morimoto M  Takahashi Y  Endo M  Saga Y 《Nature》2005,435(7040):354-359
The serially segmented (metameric) structures of vertebrates are based on somites that are periodically formed during embryogenesis. A 'clock and wavefront' model has been proposed to explain the underlying mechanism of somite formation, in which the periodicity is generated by oscillation of Notch components (the clock) in the posterior pre-somitic mesoderm (PSM). This temporal periodicity is then translated into the segmental units in the 'wavefront'. The wavefront is thought to exist in the anterior PSM and progress backwards at a constant rate; however, there has been no direct evidence as to whether the levels of Notch activity really oscillate and how such oscillation is translated into a segmental pattern in the anterior PSM. Here, we have visualized endogenous levels of Notch1 activity in mice, showing that it oscillates in the posterior PSM but is arrested in the anterior PSM. Somite boundaries formed at the interface between Notch1-activated and -repressed domains. Genetic and biochemical studies indicate that this interface is generated by suppression of Notch activity by mesoderm posterior 2 (Mesp2) through induction of the lunatic fringe gene (Lfng). We propose that the oscillation of Notch activity is arrested and translated in the wavefront by Mesp2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号