首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种基于规则的无监督词性标注方法, 利用200多条英语语法规则, 创建26个规则函数, 先将输入的待标注英语句子进行预处理后得到初始标记, 再对每个单词调用规则函数, 最终得到标注后的英语句子. 通过对Brown语料库的实验, 词性标注的正确率达到9395%. 实验结果表明, 本文方法可行、 有效, 能很好地提高英语词性标注的准确率.  相似文献   

2.
利用多资源转化方法进行词性标注研究, 旨在将源端资源的标注进行转化, 以符合目标端标注规范, 进而将转化后的资源与目标资源合并, 增大训练数据规模。做了两方面创新: 在转化过程中, 额外利用指导特征的置信度信息; 在转化后的资源中, 用模糊标注表示方法减少错误标注。实验表明, 利用置信度信息能有效帮助转化, 而模糊标注表示方法的影响不大。  相似文献   

3.
词性标注是词法分析的基础.HMM是一个数学模型,具有算法成熟、效率高、易于训练的优点;负反馈是一个控制模型,在规则中引入负反馈,可以增强规则的客观性.本文探讨了两个模型,然后将它们应用于词性标注中.实验结果表明两者的结合是有效的和成功的.  相似文献   

4.
针对藏语区别于英语和汉语,分析藏语的构形特征,得到词性标注集.从人工标注的语料中统计词和词性频率以及训练得到二元语法的HMM模型参数,运用Viterbi算法完成基于统计方法的词性标注.  相似文献   

5.
刘星宇  宁慧  张汝波 《应用科技》2021,(1):25-30,35
针对如何使用适当的模型或结构使得词性标注结果准确率提升的问题,对隐马尔可夫模型和条件随机场模型进行了深入研究和实验,使用条件随机场的不同特征方程进行了多组实验,并对比了每组实验的准确率.实验结果表明,条件随机场对于解决英文词性标注问题有着更大的优势;将共性的特征与相对具体的后缀特征结合使用所达到的词性标注准确率最高.  相似文献   

6.
为解决裂缝检测深度学习模型训练时数据集标注效率低、成本高的现状,以及现有计算机标注算法对复杂环境适应性较弱的问题,基于计算机视觉与概率统计理论,提出低监督快速标注的概念,并以计算机标注和人工标注相融合的全新标注模式,形成了完整的裂缝检测模型数据集的快速标注算法。与人工逐像素标注相比,标注精度均为84%以上,且可节省至少85%的时间;与传统计算机标注方式相比,标注干涉和简单人工标注方式可以较好地处理复杂背景问题。经U-Net深度学习模型验证,测试集的平均交并比可达0.90。  相似文献   

7.
建立了一种德语语料词性标注方法以及基于词性标注的统计方法.初步实验证明了上述方法对德语语料标注和标注后的语料进行单词、词类、短语结构和句子的统计是正确和有效的.  相似文献   

8.
文章从一阶隐马尔科夫模型(HMM)的定义及其基本问题出发,把词性自动标注描述成HMM模型的一个应用,并给出了语料库中统计计算各个模型参数的方法,其中对词性序列的检测和最佳词性序列的生成方面进行了较详细的描述和研究。  相似文献   

9.
主题句是一种把句首的成分年看成是话题加以评说的句型。显然用句子形式作谓语表解释汉语“话题-评论语”型句子构造,是符合汉语的真实情况,也体现了汉语语法的特点,即古汉语虚词的研究应逐渐自觉地把虚词同现的语言结构段紧密地联系起来,由此,词性的标注使义项的划分趋于细密化,并使句法功能标准由隐性变为显性,对义项的划分产生积极的影响。  相似文献   

10.
针对隐马尔可夫(HMM)词性标注模型状态输出独立同分布等与语言实际特性不够协调的假设,对隐马尔可夫模型进行改进,引入马尔可夫族模型。,该模型用条件独立性假设取代HMM模型的独立性假设。将马尔可夫族模型应用于词性标注,并结合句法分析进行词性标注。用改进的隐马尔可夫模型进行词性标注实验。实验结果表明:与条件独立性假设相比,独立性假设是过强假设,因而基于马尔可夫族模型的语言模型更符合语言等实际物理过程;在相同的测试条件下,马尔可夫族模型明显好于隐马尔可夫模型,词性标注准确率从94.642%提高到97.126%。  相似文献   

11.
为了进一步提高中文语料库中语料的词性标注效率,在分析最大熵模型(MEM)和隐马尔科夫模型(HMM)所涉及理论、算法及其在中文词性标注技术中的应用的基础上,进行了基于MEM和HMM的中文词性标注实验.实验结果显示,基于MEM和HMM的中文词性标注算法都获得了一致性很好且覆盖率较高的标注效果,中文词性标注的准确率、召回率和F1这3个指标均达到92%以上;MEM的标注效果总体上比HMM的稍佳.  相似文献   

12.
介绍了蒙古语词性标注系统的设计思想、实现方法及标注系统的主要功能.该系统采用基于规则和统计相结合的方法对蒙古语句子进行分类,并对已分类的句子进行词性自动标注.  相似文献   

13.
基于MapReduce的中文词性标注CRF模型并行化训练研究   总被引:1,自引:0,他引:1  
针对条件随机场模型面对大规模数据传统训练算法单机处理性能不高的问题, 提出一种基于MapReduce框架的条件随机场模型训练并行化方法, 设计了条件随机场模型特征提取及参数估计的并行算法, 实现了迭代缩放算法的并行。实验表明, 所提出的并行化方法在保证训练结果正确性的同时, 大大减少了训练时间, 效率得到较大提升。  相似文献   

14.
基于对中文Deep Web查询结果的词性分析,提出一种基于中文词性和领域知识的Deep Web语义标注方法.借助中文分词工具得到Deep Web查询结果的词性,并根据词性或词性组合与语义建立映射规则,同时结合领域知识进行语义标注.实验表明,该方法能够在多个领域对Deep Web查询结果进行正确的语义标注,从而验证了该方法的有效性.  相似文献   

15.
近些年来语料库语言学的发展较为迅速,语料库的建设成为一项重要的工作.在对语料加工的过程中,保证词性标注的一致性也成为建设高质量语料库的重要问题.目前国内外对汉语语料库词性标注结果的校对,还停留在人工校对上,对词性标注结果不一致现象尚未进行系统的研究.对于词性标注方法不是很成熟的维吾尔语语料库来说,词性校对方面的研究工作更少.首先概要介绍了一种维吾尔语的标注方法,并受一些文献的启发,根据维吾尔语的特点对其进行词性标注自动校对的研究,并分析其适用于维吾尔语词性校对的可行性,进而提高维吾尔语词性标注的正确率.  相似文献   

16.
提出一种算法,用来高效地完成训练语料的大量工作,并解决好训练语料的扩充问题,然后基于Viterbi算法提出一些改进之策,结合训练语料工作完成后的结果在二元模型基础上,采用不同规模的训练语料对同一规模的测试语料进行测试、比较与分析,并提出模型的改进方向。  相似文献   

17.
王腾阳  赵小丹  胡林 《科学技术与工程》2023,23(27):11562-11569
马铃薯育种领域积累有大量尚未结构化处理的育种文献文本,人工整理文献内的种质资源数据费时费力。为了快速、准确地从育种文献中提取种植资源数据,使用基于词性标注规则和预设词的方法抽取文献数据。文献格式为PDF文档,对于不能直接获取文档文本的情况,使用游程平滑算法和光学字符识别(Optical Character Recognition, OCR)获取文本内容。采用用户可灵活建立的关键词库保存抽取项,通过正则表达式获取关键词所在语句,并利用自然语言处理工具对语句进行分词与词性标注,根据规则抽取目标词,同时采用基于关键词与预设词距离的信息抽取方法,实现将育种文献从自由文本转化为结构化数据。对115篇文献的1490个抽取项进行信息抽取,实验表明,该方法的准确率为82.97%,召回率为99.72%,F值为90.58%,能以较高的准确率和召回率对马铃薯育种文献种质资源进行抽取,可为构建马铃薯遗传育种数据库提供数据基础。  相似文献   

18.
描述了基于统计的蒙古文自动词性标注系统的功能和总体结构,并对系统的性能进行测试.以规模为95万词的语料库作为训练语料,对5万词的测试文本进行一级词性标注,结果表明封闭测试和开放测试的准确率分别达到96.96%和96.79%  相似文献   

19.
基于转换的无指导词义标注方法   总被引:5,自引:0,他引:5  
词义标注是自然语言处理的难题之一。该文提出用于文本词义标注的转换规则自动获取算法及相应的词义排歧算法。该算法用可能的句法关系对语境进行限制,减少了训练数据中的噪音; 为提高学习算法的速度,提出利用预排序方法减少规则搜索次数,以及只调整变化部分数据的计算方法; 并给了改善召回率的词义排歧算法。在近5 万词的语料库上对本算法进行了实验,开放测试的词义排歧正确率为743% 。  相似文献   

20.
针对中文分词、词性标注等序列标注任务,提出结合双向长短时记忆模型、条件随机场模型和马尔可夫族模型或树形概率构建的中文分词和词性标注联合方法。隐马尔可夫词性标注方法忽略了词本身到词性的发射概率。在基于马尔可夫族模型或树形概率的词性标注中,当前词的词性不但与前面词的词性有关,而且与当前词本身有关。使用联合方法有助于使用词性标注信息实现分词,有机地将两者结合起来有利于消除歧义和提高分词、词性标注任务的准确率。实验结果表明:本文使用的中文分词和词性标注联合方法相比于通常的双向长短时记忆模型-条件随机场分词模型能够大幅度提高分词的准确率,并且相比于传统的隐马尔可夫词性标注方法能够大幅度提高词性标注的准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号