首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Kemiktarak U  Ndukum T  Schwab KC  Ekinci KL 《Nature》2007,450(7166):85-88
The scanning tunnelling microscope (STM) relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems--ranging from semiconductors to superconductors to atomic and molecular nanosystems. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor-capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This approximately 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching approximately 15 fm Hz(-1/2). This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements.  相似文献   

2.
In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical 'stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a 'thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.  相似文献   

3.
Images of single-stranded nucleic acids by scanning tunnelling microscopy   总被引:5,自引:0,他引:5  
D D Dunlap  C Bustamante 《Nature》1989,342(6246):204-206
The scanning tunnelling microscope has the potential to resolve the structure of biological molecules with atomic detail. Progress has been made in the imaging of dried, unshadowed double helices of DNA4-7 and in recording images of DNA under water. Also, images of unshadowed complexes of DNA with the RecA protein from Escherichia coli indicate that this technique may not be restricted to thin biological samples. Here we present images of polydeoxyadenylate molecules aligned in parallel, with their bases lying flat on a surface of highly oriented pyrolytic graphite and with their charged phosphodiester backbones protruding upwards. Based on these images, a molecular model has been built which suggests the presence of a hydrogen bond that could stabilize the parallel alignment. Our micrographs demonstrate the potential application of scanning tunnelling microscopy in structural studies of nucleic acids and provide evidence that it could be used to sequence DNA.  相似文献   

4.
Kühnle A  Linderoth TR  Hammer B  Besenbacher F 《Nature》2002,415(6874):891-893
Stereochemistry plays a central role in controlling molecular recognition and interaction: the chemical and biological properties of molecules depend not only on the nature of their constituent atoms but also on how these atoms are positioned in space. Chiral specificity is consequently fundamental in chemical biology and pharmacology and has accordingly been widely studied. Advances in scanning probe microscopies now make it possible to probe chiral phenomena at surfaces at the molecular level. These methods have been used to determine the chirality of adsorbed molecules, and to provide direct evidence for chiral discrimination in molecular interactions and the spontaneous resolution of adsorbates into extended enantiomerically pure overlayers. Here we report scanning tunnelling microscopy studies of cysteine adsorbed to a (110) gold surface, which show that molecular pairs formed from a racemic mixture of this naturally occurring amino acid are exclusively homochiral, and that their binding to the gold surface is associated with local surface restructuring. Density-functional theory calculations indicate that the chiral specificity of the dimer formation process is driven by the optimization of three bonds on each cysteine molecule. These findings thus provide a clear molecular-level illustration of the well known three-point contact model for chiral recognition in a simple bimolecular system.  相似文献   

5.
Although techniques are available for the determination of the three-dimensional structure of biological specimens, for example scanning electron microscopy, they all have some serious drawback, such as low resolution, the requirement for crystals or for the sample to be analysed in a high vacuum. In an attempt to develop a technique for high-resolution three-dimensional structure analysis of non-crystalline biological material, we have tested the applicability of scanning tunnelling microscopy (STM), a method that has been used successfully in the analysis of metal and semiconductor surface structures. We report here that scanning tunnelling electron microscopy can be used to determine the surface topography of biological specimens at atmospheric pressure and room temperature, giving a vertical resolution of the order of 1 A. Our results show that quantum mechanical tunnelling of electrons through biological material is possible provided that the specimen is deposited on a conducting surface.  相似文献   

6.
Scanning tunnelling microscopy of Z-DNA   总被引:4,自引:0,他引:4  
P G Arscott  G Lee  V A Bloomfield  D F Evans 《Nature》1989,339(6224):484-486
Scanning tunnelling microscopy (STM) has been used to map the surface topography of inorganic materials at the atomic level, and is potentially one of the most powerful techniques for probing biomolecular structure. Recent STM studies of calf thymus DNA and poly(rA).poly(rU) have shown that the helical pitch and periodic alternation of major and minor grooves can be visualized and reliably measured. Here we present the first STM images of poly(dG-me5dC).poly(dG-me5dC) in the Z-form. Both the general appearance of the fibres and measurements of helical parameters are in good agreement with models derived from X-ray diffraction.  相似文献   

7.
Microscopy is an essential technique for observation on living cells. There is currently great interest in applying scanning probe microscopy to image-living biological cells in their natural environment at the nanometer scale. Scanning ion conductance microscopy is a new form of scanning probe microscopy, which enables non-contact high-resolution imaging of living biological cells. Based on a scanned nanopipette in physiological buffer, the distance feedback control uses the ion current to control the distance between the pipette tip and the sample surface. However, this feedback control has difficulties over slopes on convoluted cell surfaces, which limits its resolution. In this study, we present an improved form of feedback control that removes the contribution of up to the third-order slope from the ion current signal, hence providing a more accurate signal for controlling the distance. We show that this allows faster and lower noise topographic high-resolution imaging.  相似文献   

8.
Microscopy is an essential technique for observation on living cells. There is currently great interest in apply scanning probe microscopy to image living biological cells in their natural environment at the nanometer scale. Scanning ion conductance microscopy is a new form of scanning probe microscopy, which enables non-contact high resolution imaging of living biological cells. Based on a scanned nanopipette in physiological buffer, the distance feedback control uses the ion current to control the distance between the pipette tip and the sample surface. However, this feedback control has difficulties over slopes on convoluted cell surfaces, which limits its resolution. In this study, we present an improved form of feedback control that removes the contribution of up to the third order slope from the ion current signal, hence providing a more accurate signal for controlling the distance. We show that this allows faster and lower noise topographic high resolution imaging.  相似文献   

9.
Atomic-scale imaging of carbon nanofibre growth   总被引:1,自引:0,他引:1  
The synthesis of carbon nanotubes with predefined structure and functionality plays a central role in the field of nanotechnology, whereas the inhibition of carbon growth is needed to prevent a breakdown of industrial catalysts for hydrogen and synthesis gas production. The growth of carbon nanotubes and nanofibres has therefore been widely studied. Recent advances in in situ techniques now open up the possibility of studying gas-solid interactions at the atomic level. Here we present time-resolved, high-resolution in situ transmission electron microscope observations of the formation of carbon nanofibres from methane decomposition over supported nickel nanocrystals. Carbon nanofibres are observed to develop through a reaction-induced reshaping of the nickel nanocrystals. Specifically, the nucleation and growth of graphene layers are found to be assisted by a dynamic formation and restructuring of mono-atomic step edges at the nickel surface. Density-functional theory calculations indicate that the observations are consistent with a growth mechanism involving surface diffusion of carbon and nickel atoms. The finding that metallic step edges act as spatiotemporal dynamic growth sites may be important for understanding other types of catalytic reactions and nanomaterial syntheses.  相似文献   

10.
Bobrov K  Mayne AJ  Dujardin G 《Nature》2001,413(6856):616-619
The electronic properties of insulators such as diamond are of interest not only for their passive dielectric capabilities for use in electronic devices, but also for their strong electron confinement on atomic scales. However, the inherent lack of electrical conductivity in insulators usually prevents the investigation of their surfaces by atomic-scale characterization techniques such as scanning tunnelling microscopy (STM). And although atomic force microscopy could in principle be used, imaging diamond surfaces has not yet been possible. Here, we demonstrate that STM can be used in an unconventional resonant electron injection mode to image insulating diamond surfaces and to probe their electronic properties at the atomic scale. Our results reveal striking electronic features in high-purity diamond single crystals, such as the existence of one-dimensional fully delocalized electronic states and a very long diffusion length for conduction-band electrons. We expect that our method can be applied to investigate the electronic properties of other insulating materials and so help in the design of atomic-scale electronic devices.  相似文献   

11.
By using scanning near-field optical microscopy (SNOM), HeLa cells in apoptosis process are imaged with a higher optical resolution beyond the diffraction limit. Since SNOM provides both topographic and transmitted light intensity information of a cell, it can correlate the structural characteristics and optical properties with the spatial position of the apoptotic cells. Wavelength imaging by using near-field spectroscopy shows that there is a great difference in light propagation and absorption in the cell. This unique technique can be applied to the super high resolution imaging of different components in the cell. The observations by near-field optical imaging and near-field spectroscopy indicate an inhomogeneous aggregation of the inner structure in the apoptotic HeLa cells and the change of transmission intensity of light with the apoptosis status.  相似文献   

12.
Muller DA  Nakagawa N  Ohtomo A  Grazul JL  Hwang HY 《Nature》2004,430(7000):657-661
At the heart of modern oxide chemistry lies the recognition that beneficial (as well as deleterious) materials properties can be obtained by deliberate deviations of oxygen atom occupancy from the ideal stoichiometry. Conversely, the capability to control and confine oxygen vacancies will be important to realize the full potential of perovskite ferroelectric materials, varistors and field-effect devices. In transition metal oxides, oxygen vacancies are generally electron donors, and in strontium titanate (SrTiO3) thin films, oxygen vacancies (unlike impurity dopants) are particularly important because they tend to retain high carrier mobilities, even at high carrier densities. Here we report the successful fabrication, using a pulsed laser deposition technique, of SrTiO3 superlattice films with oxygen doping profiles that exhibit subnanometre abruptness. We profile the vacancy concentrations on an atomic scale using annular-dark-field electron microscopy and core-level spectroscopy, and demonstrate absolute detection sensitivities of one to four oxygen vacancies. Our findings open a pathway to the microscopic study of individual vacancies and their clustering, not only in oxides, but in crystalline materials more generally.  相似文献   

13.
J S Foster  J E Frommer  P C Arnett 《Nature》1988,331(6154):324-326
In a very short time the scanning tunnelling microscope has become an important tool in surface science, and physics in general. Its primary use has been to obtain atomic-resolution images of surfaces, but recently, efforts have been made to use it to manipulate materials as well as image them. One may now reasonably ask if it is possible to move and alter matter predictably on an atomic scale. Here we report the accomplishment of the smallest yet, purposeful, spatially localized changes in matter, effected on a graphite surface. We believe that the changes result from the pinning of individual organic molecules to the graphite. The reverse manipulation, the removal of pinned molecules, has also been demonstrated. Finally, we have evidence that we can remove a portion of a pinned molecule, effectively performing transformations on single molecules using the tunnelling microscope.  相似文献   

14.
探讨了光子扫描隧道显微成象系统中光纤探针对经样品调制后的倏逝场的探测机理;着重研究了光纤探针的腐蚀加工工艺,同时具体分析了单模、多模光纤探针不同的显微成象特点,并与理论数值模拟计算结果相比较;最终应用于多种样品的显微成象,为纳米级分辨的光子扫描隧道显微镜的研制奠定了基础.  相似文献   

15.
近场光学扫描技术是近年兴起的高新技术之一。超近场光学扫描尚未见报导。本讨论超近场光学扫描显微镜的工作原理及其超分辨理论。  相似文献   

16.
Voyles PM  Muller DA  Grazul JL  Citrin PH  Gossmann HJ 《Nature》2002,416(6883):826-829
As silicon-based transistors in integrated circuits grow smaller, the concentration of charge carriers generated by the introduction of impurity dopant atoms must steadily increase. Current technology, however, is rapidly approaching the limit at which introducing additional dopant atoms ceases to generate additional charge carriers because the dopants form electrically inactive clusters. Using annular dark-field scanning transmission electron microscopy, we report the direct, atomic-resolution observation of individual antimony (Sb) dopant atoms in crystalline Si, and identify the Sb clusters responsible for the saturation of charge carriers. The size, structure, and distribution of these clusters are determined with a Sb-atom detection efficiency of almost 100%. Although single heavy atoms on surfaces or supporting films have been visualized previously, our technique permits the imaging of individual dopants and clusters as they exist within actual devices.  相似文献   

17.
通过用电化学腐蚀法制作针尖以及制备碳颗粒和高温定向热解石墨样品,利用STM研究高温定向热解石墨和碳颗粒的结构特征及其形貌,通过热解石墨六角型结构碳原子间距对系统定标,可估测碳颗粒的尺度。  相似文献   

18.
19.
Neurofilaments (NFs) were isolated from bovine spinal cord. The structure of purified NFs was studied by scanning tunneling microscopy (STM). The STM images showed that NF was composed of a long core filament and numerous sidearms flanking the rod regularly. The diameter of the rod was about 10 nm (10.2 ± 0.8 nm). Most of the sidearms were short and the distance between two adjacent sidearms was approximately 10 nm. There were some long sidearms between two proximal core filaments. The distance between two adjacent long sidearms was 21 nm. A three-quarter-staggered fashion of native NF structure was put forward.  相似文献   

20.
戊二醛作为生物材料的固定剂,在原子力显微镜(AFM)制样中已广泛使用.虽然已有用戊二醛观测大肠杆菌的文献报道,但到目前为止,关于戊二醛在AFM观测大肠杆菌中的作用还缺乏系统研究.首先分析AFM扫描图像的假像,进而探讨戊二醛的浓度和固定时间对AFM图像质量和大肠杆菌表面形貌的影响.结果表明,戊二醛的浓度和固定时间对AFM图像的清晰度、大肠杆菌的微观结构以及细胞的三维尺寸都有着重要影响.在相同固定条件下所扫描的AFM图像与扫描电子显微镜(SEM)图像对比发现,两者的形貌相似,而AFM图像比SEM图像分辨率更高,在定量分析上也更有优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号