首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells   总被引:1,自引:0,他引:1  
Whereas naive T cells migrate only to secondary lymphoid organs, activation by antigen confers to T cells the ability to home to non-lymphoid sites. Activated effector/memory T cells migrate preferentially to tissues that are connected to the secondary lymphoid organs where antigen was first encountered. Thus, oral antigens induce effector/memory cells that express essential receptors for intestinal homing, namely the integrin alpha4beta7 and CCR9, the receptor for the gut-associated chemokine TECK/CCL25 (refs 6, 8, 9). Here we show that this imprinting of gut tropism is mediated by dendritic cells from Peyer's patches. Stimulation of CD8-expressing T cells by dendritic cells from Peyer's patches, peripheral lymph nodes and spleen induced equivalent activation markers and effector activity in T cells, but only Peyer's patch dendritic cells induced high levels of alpha4beta7, responsiveness to TECK and the ability to home to the small intestine. These findings establish that Peyer's patch dendritic cells imprint gut-homing specificity on T cells, and thus license effector/memory cells to access anatomical sites most likely to contain their cognate antigen.  相似文献   

2.
T-cell co-stimulation through B7RP-1 and ICOS   总被引:65,自引:0,他引:65  
T-cell activation requires co-stimulation through receptors such as CD28 and antigen-specific signalling through the T-cell antigen receptor. Here we describe a new murine costimulatory receptor-ligand pair. The receptor, which is related to CD28 and is the homologue of the human protein ICOS, is expressed on activated T cells and resting memory T cells. The ligand, which has homology to B7 molecules and is called B7-related protein-1 (B7RP-1), is expressed on B cells and macrophages. ICOS and B7RP-I do not interact with proteins in the CD28-B7 pathway, and B7RP-1 co-stimulates T cells in vitro independently of CD28. Transgenic mice expressing a B7RP-1-Fc fusion protein show lymphoid hyperplasia in the spleen, lymph nodes and Peyer's patches. Presensitized mice treated with B7RP-1-Fc during antigen challenge show enhanced hypersensitivity. Therefore, B7RP-1 exhibits co-stimulatory activities in vitro and in vivo. ICOS and B7RP-1 define a new and distinct receptor-ligand pair that is structurally related to CD28-B7 and is involved in the adaptive immune response.  相似文献   

3.
Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes.   总被引:24,自引:0,他引:24  
Specialized epithelia known as M cells overlying the lymphoid follicles of Peyer's patches are important in the mucosal immune system, but also provide a portal of entry for pathogens such as Salmonella typhimurium, Mycobacterium bovis, Shigella flexneri, Yersinia enterocolitica and reoviruses. Penetration of intestinal M cells and epithelial cells by Salmonella typhimurium requires the invasion genes of Salmonella Pathogenicity Island 1 (SPI1). SPI1-deficient S. typhimurium strains gain access to the spleen following oral administration and cause lethal infection in mice without invading M cells or localizing in Peyer's patches, which indicates that Salmonella uses an alternative strategy to disseminate from the gastrointestinal tract. Here we report that Salmonella is transported from the gastrointestinal tract to the bloodstream by CD18-expressing phagocytes, and that CD18-deficient mice are resistant to dissemination of Salmonella to the liver and spleen after oral administration. This CD18-dependent pathway of extraintestinal dissemination may be important for the development of systemic immunity to gastrointestinal pathogens, because oral challenge with SPI1-deficient S. typhimurium elicits a specific systemic IgG humoral immune response, despite an inability to stimulate production of specific mucosal IgA.  相似文献   

4.
Kupperman E  An S  Osborne N  Waldron S  Stainier DY 《Nature》2000,406(6792):192-195
Coordinated cell migration is essential in many fundamental biological processes including embryonic development, organogenesis, wound healing and the immune response. During organogenesis, groups of cells are directed to specific locations within the embryo. Here we show that the zebrafish miles apart (mil) mutation specifically affects the migration of the heart precursors to the midline. We found that mutant cells transplanted into a wild-type embryo migrate normally and that wild-type cells in a mutant embryo fail to migrate, suggesting that mil may be involved in generating an environment permissive for migration. We isolated mil by positional cloning and show that it encodes a member of the lysosphingolipid G-protein-coupled receptor family. We also show that sphingosine-1-phosphate is a ligand for Mil, and that it activates several downstream signalling events that are not activated by the mutant alleles. These data reveal a new role for lysosphingolipids in regulating cell migration during vertebrate development and provide the first molecular clues into the fusion of the bilateral heart primordia during organogenesis of the heart.  相似文献   

5.
6.
7.
8.
Natural killer (NK) cells are classically viewed as lymphocytes that provide innate surveillance against virally infected cells and tumour cells through the release of cytolytic mediators and interferon (IFN)-gamma. In humans, blood CD56(dim) NK cells specialize in the lysis of cell targets. In the lymph nodes, CD56(bright) NK cells secrete IFN-gamma cooperating with dendritic cells and T cells in the generation of adaptive responses. Here we report the characterization of a human NK cell subset located in mucosa-associated lymphoid tissues, such as tonsils and Peyer's patches, which is hard-wired to secrete interleukin (IL)-22, IL-26 and leukaemia inhibitory factor. These NK cells, which we refer to as NK-22 cells, are triggered by acute exposure to IL-23. In vitro, NK-22-secreted cytokines stimulate epithelial cells to secrete IL-10, proliferate and express a variety of mitogenic and anti-apoptotic molecules. NK-22 cells are also found in mouse mucosa-associated lymphoid tissues and appear in the small intestine lamina propria during bacterial infection, suggesting that NK-22 cells provide an innate source of IL-22 that may help constrain inflammation and protect mucosal sites.  相似文献   

9.
Zhang J  Niu C  Ye L  Huang H  He X  Tong WG  Ross J  Haug J  Johnson T  Feng JQ  Harris S  Wiedemann LM  Mishina Y  Li L 《Nature》2003,425(6960):836-841
Haematopoietic stem cells (HSCs) are a subset of bone marrow cells that are capable of self-renewal and of forming all types of blood cells (multi-potential). However, the HSC 'niche'--the in vivo regulatory microenvironment where HSCs reside--and the mechanisms involved in controlling the number of adult HSCs remain largely unknown. The bone morphogenetic protein (BMP) signal has an essential role in inducing haematopoietic tissue during embryogenesis. We investigated the roles of the BMP signalling pathway in regulating adult HSC development in vivo by analysing mutant mice with conditional inactivation of BMP receptor type IA (BMPRIA). Here we show that an increase in the number of spindle-shaped N-cadherin+CD45- osteoblastic (SNO) cells correlates with an increase in the number of HSCs. The long-term HSCs are found attached to SNO cells. Two adherens junction molecules, N-cadherin and beta-catenin, are asymmetrically localized between the SNO cells and the long-term HSCs. We conclude that SNO cells lining the bone surface function as a key component of the niche to support HSCs, and that BMP signalling through BMPRIA controls the number of HSCs by regulating niche size.  相似文献   

10.
S Huang  L W Terstappen 《Nature》1992,360(6406):745-749
Haematopoietic stem cells are a population of cells capable both of self renewal and of differentiation into a variety of haematopoietic lineages. Enrichment techniques of human haematopoietic stem cells have used the expression of CD34, present on bone marrow progenitor cells. But most CD34+ bone marrow cells are committed to their lineage, and more recent efforts have focused on the precise characterization of the pluripotent subset of CD34+ cells. Here we report the characterization of two distinct subsets of pluripotent stem cells from human fetal bone marrow, a CD34+, HLA-DR+, CD38- subset that can differentiate into all haematopoietic lineages, and a distinct more primitive subset, that is CD34+, HLA-DR-, CD38-, that can differentiate into haematopoietic precursors and stromal cells capable of supporting the differentiation of these precursors. These data represent, to our knowledge, the first identification of a single cell capable of reconstituting the haematopoietic cells and their associated bone marrow microenvironment.  相似文献   

11.
Successful vaccines contain not only protective antigen(s) but also an adjuvant component that triggers innate immune activation and is necessary for their optimal immunogenicity. In the case of DNA vaccines, this consists of plasmid DNA; however, the adjuvant element(s) as well as its intra- and inter-cellular innate immune signalling pathway(s) leading to the encoded antigen-specific T- and B-cell responses remain unclear. Here we demonstrate in vivo that TANK-binding kinase 1 (TBK1), a non-canonical IkappaB kinase, mediates the adjuvant effect of DNA vaccines and is essential for its immunogenicity in mice. Plasmid-DNA-activated, TBK1-dependent signalling and the resultant type-I interferon receptor-mediated signalling was required for induction of antigen-specific B and T cells, which occurred even in the absence of innate immune signalling through a well known CpG DNA sensor-Toll-like receptor 9 (TLR9) or Z-DNA binding protein 1 (ZBP1, also known as DAI, which was recently reported as a potential B-form DNA sensor). Moreover, bone-marrow-transfer experiments revealed that TBK1-mediated signalling in haematopoietic cells was critical for the induction of antigen-specific B and CD4(+) T cells, whereas in non-haematopoietic cells TBK1 was required for CD8(+) T-cell induction. These data suggest that TBK1 is a key signalling molecule for DNA-vaccine-induced immunogenicity, by differentially controlling DNA-activated innate immune signalling through haematopoietic and non-haematopoietic cells.  相似文献   

12.
A chemokine-driven positive feedback loop organizes lymphoid follicles   总被引:46,自引:0,他引:46  
Lymphoid follicles are B-cell-rich compartments of lymphoid organs that function as sites of B-cell antigen encounter and differentiation. CXC chemokine receptor-5 (CXCR5) is required for B-cell migration to splenic follicles, but the requirements for homing to B-cell areas in lymph nodes remain to be defined. Here we show that lymph nodes contain two types of B-cell-rich compartment: follicles containing follicular dendritic cells, and areas lacking such cells. Using gene-targeted mice, we establish that B-lymphocyte chemoattractant (BLC/BCA1) and its receptor, CXCR5, are needed for B-cell homing to follicles in lymph nodes as well as in spleen. We also find that BLC is required for the development of most lymph nodes and Peyer's patches. In addition to mediating chemoattraction, BLC induces B cells to up-regulate membrane lymphotoxin alpha1beta2, a cytokine that promotes follicular dendritic cell development and BLC expression, establishing a positive feedback loop that is likely to be important in follicle development and homeostasis. In germinal centres the feedback loop is overridden, with B-cell lymphotoxin alpha1beta2 expression being induced by a mechanism independent of BLC.  相似文献   

13.
Li Q  Duan L  Estes JD  Ma ZM  Rourke T  Wang Y  Reilly C  Carlis J  Miller CJ  Haase AT 《Nature》2005,434(7037):1148-1152
In early simian immunodeficiency virus (SIV) and human immunodeficiency virus-1 (HIV-1) infections, gut-associated lymphatic tissue (GALT), the largest component of the lymphoid organ system, is a principal site of both virus production and depletion of primarily lamina propria memory CD4+ T cells; that is, CD4-expressing T cells that previously encountered antigens and microbes and homed to the lamina propria of GALT. Here, we show that peak virus production in gut tissues of SIV-infected rhesus macaques coincides with peak numbers of infected memory CD4+ T cells. Surprisingly, most of the initially infected memory cells were not, as expected, activated but were instead immunophenotypically 'resting' cells that, unlike truly resting cells, but like the first cells mainly infected at other mucosal sites and peripheral lymph nodes, are capable of supporting virus production. In addition to inducing immune activation and thereby providing activated CD4+ T-cell targets to sustain infection, virus production also triggered an immunopathologically limiting Fas-Fas-ligand-mediated apoptotic pathway in lamina propria CD4+ T cells, resulting in their preferential ablation. Thus, SIV exploits a large, resident population of resting memory CD4+ T cells in GALT to produce peak levels of virus that directly (through lytic infection) and indirectly (through apoptosis of infected and uninfected cells) deplete CD4+ T cells in the effector arm of GALT. The scale of this CD4+ T-cell depletion has adverse effects on the immune system of the host, underscoring the importance of developing countermeasures to SIV that are effective before infection of GALT.  相似文献   

14.
Linear ubiquitination prevents inflammation and regulates immune signalling   总被引:2,自引:0,他引:2  
Members of the tumour necrosis factor (TNF) receptor superfamily have important functions in immunity and inflammation. Recently linear ubiquitin chains assembled by a complex containing HOIL-1 and HOIP (also known as RBCK1 and RNF31, respectively) were implicated in TNF signalling, yet their relevance in vivo remained uncertain. Here we identify SHARPIN as a third component of the linear ubiquitin chain assembly complex, recruited to the CD40 and TNF receptor signalling complexes together with its other constituents, HOIL-1 and HOIP. Mass spectrometry of TNF signalling complexes revealed RIP1 (also known as RIPK1) and NEMO (also known as IKKγ or IKBKG) to be linearly ubiquitinated. Mutation of the Sharpin gene (Sharpin(cpdm/cpdm)) causes chronic proliferative dermatitis (cpdm) characterized by inflammatory skin lesions and defective lymphoid organogenesis. Gene induction by TNF, CD40 ligand and interleukin-1β was attenuated in cpdm-derived cells which were rendered sensitive to TNF-induced death. Importantly, Tnf gene deficiency prevented skin lesions in cpdm mice. We conclude that by enabling linear ubiquitination in the TNF receptor signalling complex, SHARPIN interferes with TNF-induced cell death and, thereby, prevents inflammation. Our results provide evidence for the relevance of linear ubiquitination in vivo in preventing inflammation and regulating immune signalling.  相似文献   

15.
Cancer stem cells, which share many common properties and regulatory machineries with normal stem cells, have recently been proposed to be responsible for tumorigenesis and to contribute to cancer resistance. The main challenges in cancer biology are to identify cancer stem cells and to define the molecular events required for transforming normal cells to cancer stem cells. Here we show that Pten deletion in mouse haematopoietic stem cells leads to a myeloproliferative disorder, followed by acute T-lymphoblastic leukaemia (T-ALL). Self-renewable leukaemia stem cells (LSCs) are enriched in the c-Kit(mid)CD3(+)Lin(-) compartment, where unphosphorylated beta-catenin is significantly increased. Conditional ablation of one allele of the beta-catenin gene substantially decreases the incidence and delays the occurrence of T-ALL caused by Pten loss, indicating that activation of the beta-catenin pathway may contribute to the formation or expansion of the LSC population. Moreover, a recurring chromosomal translocation, T(14;15), results in aberrant overexpression of the c-myc oncogene in c-Kit(mid)CD3(+)Lin(-) LSCs and CD3(+) leukaemic blasts, recapitulating a subset of human T-ALL. No alterations in Notch1 signalling are detected in this model, suggesting that Pten inactivation and c-myc overexpression may substitute functionally for Notch1 abnormalities, leading to T-ALL development. Our study indicates that multiple genetic or molecular alterations contribute cooperatively to LSC transformation.  相似文献   

16.
Dendritic cells comprise a system of highly efficient antigen-presenting cells which initiate immune responses such as the sensitization of T cells restricted by major histocompatibility complex molecules, the rejection of organ transplants and the formation of T-cell-dependent antibodies. Dendritic cells are found in many non-lymphoid tissues, such as skin (Langerhans cells) and mucosa, and they migrate after antigen capture through the afferent lymph or the bloodstream to lymphoid organs, where they efficiently present antigen to T cells. Dendritic cells are difficult to isolate and, although they originate from bone marrow their site of maturation and the conditions that direct their growth and differentiation are still poorly characterized. Granulocyte macrophage-colony stimulating factor (GM-CSF) favours the outgrowth of dendritic cells from mouse peripheral blood. Here we extend this finding to man and demonstrate that cooperation between GM-CSF and tumour necrosis factor-alpha (TNF-alpha) is crucial for the generation of human dendritic/Langerhans cells from CD34+ haematopoietic progenitors. The availability of large numbers of these cells should now facilitate the understanding of their role in immunological regulation and disorder.  相似文献   

17.
18.
Bouskra D  Brézillon C  Bérard M  Werts C  Varona R  Boneca IG  Eberl G 《Nature》2008,456(7221):507-510
Intestinal homeostasis is critical for efficient energy extraction from food and protection from pathogens. Its disruption can lead to an array of severe illnesses with major impacts on public health, such as inflammatory bowel disease characterized by self-destructive intestinal immunity. However, the mechanisms regulating the equilibrium between the large bacterial flora and the immune system remain unclear. Intestinal lymphoid tissues generate flora-reactive IgA-producing B cells, and include Peyer's patches and mesenteric lymph nodes, as well as numerous isolated lymphoid follicles (ILFs). Here we show that peptidoglycan from Gram-negative bacteria is necessary and sufficient to induce the genesis of ILFs in mice through recognition by the NOD1 (nucleotide-binding oligomerization domain containing 1) innate receptor in epithelial cells, and beta-defensin 3- and CCL20-mediated signalling through the chemokine receptor CCR6. Maturation of ILFs into large B-cell clusters requires subsequent detection of bacteria by toll-like receptors. In the absence of ILFs, the composition of the intestinal bacterial community is profoundly altered. Our results demonstrate that intestinal bacterial commensals and the immune system communicate through an innate detection system to generate adaptive lymphoid tissues and maintain intestinal homeostasis.  相似文献   

19.
Bv8 regulates myeloid-cell-dependent tumour angiogenesis   总被引:1,自引:0,他引:1  
Shojaei F  Wu X  Zhong C  Yu L  Liang XH  Yao J  Blanchard D  Bais C  Peale FV  van Bruggen N  Ho C  Ross J  Tan M  Carano RA  Meng YG  Ferrara N 《Nature》2007,450(7171):825-831
Bone-marrow-derived cells facilitate tumour angiogenesis, but the molecular mechanisms of this facilitation are incompletely understood. We have previously shown that the related EG-VEGF and Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), promote both tissue-specific angiogenesis and haematopoietic cell mobilization. Unlike EG-VEGF, Bv8 is expressed in the bone marrow. Here we show that implantation of tumour cells in mice resulted in upregulation of Bv8 in CD11b+Gr1+ myeloid cells. We identified granulocyte colony-stimulating factor as a major positive regulator of Bv8 expression. Anti-Bv8 antibodies reduced CD11b+Gr1+ cell mobilization elicited by granulocyte colony-stimulating factor. Adenoviral delivery of Bv8 into tumours was shown to promote angiogenesis. Anti-Bv8 antibodies inhibited growth of several tumours in mice and suppressed angiogenesis. Anti-Bv8 treatment also reduced CD11b+Gr1+ cells, both in peripheral blood and in tumours. The effects of anti-Bv8 antibodies were additive to those of anti-Vegf antibodies or cytotoxic chemotherapy. Thus, Bv8 modulates mobilization of CD11b+Gr1+ cells from the bone marrow during tumour development and also promotes angiogenesis locally.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号