首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高密度球形LiNi_(0.8)Co_(0.2)O_2的制备及性能   总被引:6,自引:0,他引:6  
采用控制结晶法合成球形 β- Ni0 .8Co0 .2 (OH) 2 ,与L i OH.H2 O 混合 ,在 75 0℃通 O2 热处理 8h 合成球形L i Ni0 .8Co0 .2 O2 粉末。用 X光衍射和扫描电镜分析对 β- Ni0 .8Co0 .2 (OH) 2 和 L i Ni0 .8Co0 .2 O2 粉末的结构进行了表征。充放电测试表明该球形 L i Ni0 .8Co0 .2 O2 正极材料具有优良的电化学性能 :首次充电比容量为 2 17m A.h.g- 1 ,放电比容量为172 m A.h.g- 1 ,5 0次充放电循环后保持初始放电比容量的97.5 %。该球形 L i Ni0 .8Co0 .2 O2 粉末的振实密度高达 2 .8g.cm- 3,远高于一般非球形 L i Ni0 .8Co0 .2 O2 正极材料。高密度球形 L i Ni0 .8Co0 .2 O2 正极材料用于锂离子电池可以显著提高电池的能量密度。  相似文献   

2.
采用机械混合法制备中温固体氧化物燃料电池梯度复合阴极材料LaBaCo2O5+δ-Ce0.8Sm0.2O1.9(LBCO-SDC)。通过X线衍射(XRD)分析、扫描电镜(SEM)分析、热膨胀法、交流阻抗谱法和循环伏安法分别对晶体结构、界面微观结构、热膨胀性及电化学性能进行表征。结果表明:LBCO阴极与SDC电解质之间具有良好的化学相容性;电解质SDC的添加有效地降低了阴极材料LBCO的热膨胀系数;双层梯度复合阴极比单层阴极表现出更小的比表面电阻以及极化过电位,显示出更好的电化学性能;在700℃时,双层梯度复合阴极的比表面电阻与LBCO阴极相比下降了约13.2%,极化过电位(电流密度为0.20 A/cm2)从51.0 mV下降到46.4 mV。  相似文献   

3.
LiNi_(0.8)Co_(0.2)O_2的表面修饰及性能   总被引:3,自引:0,他引:3  
锂离子电池正极材料和电解液之间的恶性相互作用引起正极材料和电池性能的劣化。将 L i Ni0 .8Co0 .2 O2 ,L i OH.H2 O和 H3BO3以摩尔比 10 0 :1:2均匀混合 ,5 0 0℃热处理 10 h,在 L i Ni0 .8Co0 .2 O2 表面包覆上一层 L i2 O- 2 B2 O3玻璃层。用 X光电子能谱、扫描电镜和 X光衍射分析对包覆前后 L i Ni0 .8Co0 .2 O2 的结构进行了表征。结果表明 ,表面修饰有效地抑制了 L i Ni0 .8Co0 .2 O2 和电解液之间的恶性相互作用 ,材料的实际比容量提高 ,充放电循环稳定性改善 ,自放电速率减小。表面修饰处理是改善锂离子电池正极材料综合性能的有效途径  相似文献   

4.
分别采用水热合成法和甘氨酸-硝酸盐燃烧法制备了Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)粉体。通过X-射线衍射光谱和扫描电镜图(SEM)对比分析了两种SDC粉体的物相组成和表面形貌,最后以其作为电解质缓冲层,分别制备了结构为NiO-YSZ/YSZ/SDC/BSCF-SDC阳极支撑的固体氧化物燃料电池,并对电池性能进行了测试。结果表明,两种方法合成的SDC粉体均形成了清晰的立方萤石结构,且水热合成法制备的SDC粉体晶粒尺寸更小,分散性更好,以此制备的单电池具有更优越的电池性能。  相似文献   

5.
采用溶胶-凝胶法制备La0.8Ba0.2MnO3 粉体,并与纳米Ni 粉按不同质量比复合,制得复合材料样品.测量样品在2~18 GHz 频率范围内的复介电常数、复磁导率并计算微波反射系数,分析不同组分对材料微波吸收性能的影响及其可能的吸收机制.研究结果表明复合体系比单一组分样品具有更好的吸收效果;当La0.8Ba0.2MnO3含量为62.5%时,材料微波吸收效果最佳;当样品厚度为2 mm 时,大于10 dB 的吸收频宽达到3.6 GHz,最大吸收峰值为24 dB;当样品厚度为1.8 mm 时,大于10 dB 的吸收频宽达到3.3 GHz,最大吸收峰值为44 dB;LaMnO3在A 位掺杂Ba2 ,其电磁性能将发生变化,再与磁性纳米Ni 粉复合,介电损耗和磁损耗的综合作用能使体系的微波吸收效能显著加强.  相似文献   

6.
采用溶胶—凝胶技术 ,聚乙烯醇 ( PVA)为络合剂 ,合成出尖晶石型大比表面纳米粒子Mg Al2 O4 ,用硝酸盐浸渍分解法制备出负载型 La0 .8Sr0 .2 Co O3/ Mg Al2 O4 催化剂 ,以 XRD、BET、TPR、二甲苯完全氧化等手段 ,研究了合成条件对形成的 Mg Al2 O4 性质的影响及催化剂的性能 ,并与负载型 L a0 .8Sr0 .2 Co O3/堇青石、La0 .8Sr0 .2 Co O3/ γ-Al2 O3催化剂进行了对比 .结果表明 ,活性组分在 Mg Al2 O4 载体上是高度分散的 ,负载型 La0 .8Sr0 .2 Co O3/ Mg Al2 O4 催化剂具有优良的催化活性和抗高温烧结能力  相似文献   

7.
采用磁控溅射法,选用LaNiO3(LNO)作为缓冲层和电极层,在硅基片上成功地制备出了0.74Pb(Mg1/3Nb2/3)O3-0.26PbTiO3(PMN-0.26PT)铁电薄膜.X射线衍射(XRD)分析表明薄膜具有沿(110)方向择优取向的钙钛矿结构.利用NKD光谱测试仪测试了薄膜的反射谱,并使用最小二乘法进行拟合分析得到其折射率和消光系数.在沉积温度为500℃时,薄膜具有更为均匀和致密的微观结构.在波长为633 nm时,该薄膜的折射率大小为2.41.薄膜的折射率和消光系数随着光子能量的增加而增加.薄膜的这些光学特性使其有望在低压电光转换器、光波导等器件中应用.  相似文献   

8.
文章采用柠檬酸络合法制备了La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)钙钛矿,采用低温N_2物理吸附、X-射线衍射(X-ray diffraction,XRD)、氢气程序升温还原(hydrogen temperature programmed reduction,H_2-TPR)、氧气程序升温脱附(oxygen temperature programmed desorption,O_2-TPD)和X-射线光电子能谱(X-ray photoelectron spectroscopy,XPS)表征了其物理化学性质,并考察了甲烷催化燃烧活性。结果表明,当柠檬酸/金属离子摩尔比(citric acid to metal ions molar ratio,CMMR)为1.25时,所制得的催化剂催化活性最佳。XRD表征结果表明,CMMR为1.25或1.50时,形成的钙钛矿晶型更完整。H_2-TPR表征结果表明,CMMR为1.25时,催化剂中的Fe~(4+)和Co~(3+)的还原温度较低,还原性能好。XPS表征结果表明,CMMR为1.25时,催化剂表面上吸附氧晶格氧之比最大。O_2-TPD表征结果表明,随着CMMR增加,催化剂中可移动晶格氧量减小,脱附温度增加,非化学计量比显著减小。CMMR为1.25时,催化剂表面吸附氧较易活化,形成活性物种。  相似文献   

9.
利用脉冲激光沉积方法在(001)取向SrTiO_3(STO)衬底上制备高质量Pb(Zr_(0.2)Ti_(0.8))O_3外延薄膜.使用高分辨X射线衍射仪、扫描探针显微镜以及铁电测试系统对薄膜结构、形貌、铁电特性进行系统测试分析.结果表明当激光能量密度超过临界值(≈5 J/cm~2)后,Pb(Zr_(0.2)Ti_(0.8))O_3薄膜由普通四方相结构(T phase,c/a≈1.05)转变为高极化相(HT Phase,c/a≈1.09).相比于普通四方相(T Phase),高极化相(HT Phase)结构Pb(Zr_(0.2)Ti_(0.8))O_3薄膜铁电剩余极化大小提高接近20%.  相似文献   

10.
采用脉冲激光沉积技术,在LaAlO3和0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3两种单晶基片上外延生长了La0.8Ca0.2MnO3薄膜.X射线衍射分析表明两种薄膜皆为单取向生长,且面内分别受到压应力和张应力作用.晶格失配造成的应力对薄膜的电阻和金属-绝缘相转变温度Tp影响很大.对LCMO/PMN-PT施加外电场,从而调节薄膜所受应力也可以调制其电阻和Tp.  相似文献   

11.
凝胶浇注法制备了阴极材料Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ),并对Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)材料的性能进行分析。制备的Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)为钙钛矿相,其颗粒粒度小,并且尺寸均匀。将粉末在1000℃下烧结,所得烧结体的孔隙率为29.86%。在500~800℃温度范围内测试,测试温度升高,电导率降低,在500℃时电导率最大为38.2 S/cm。阴极Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)与电解质Sm_(0.2)Ce_(0.8)O_(1.9)做成阴极对称单电池,在800℃时测得欧姆阻抗和界面阻抗分别为1.92Ω·cm~(-2)和0.17Ω·cm~(-2),阴极BSCF与电解质SDC的化学相容性好。  相似文献   

12.
通过简单的沉淀法合成了Nb2O5/Cd S纳米粒子,利用XRD、TEM、XPS对其进行了表征,采用制备的Nb2O5/Cd S纳米粒子在可见光照射下对罗丹明B进行了降解实验.结果表明:负载在Nb2O5表面上的Cd S粒径大小较均一,约为35 nm,在可见光照射下,Cd S质量比为20%的Nb2O5/Cd S纳米粒子光催化活性最佳,可见光照射下3 h对罗丹明B降解率为98%,经过3次循环利用,发现其具有良好的光催化稳定性.  相似文献   

13.
采用甘氨酸-硝酸盐法(GNP)制备Pr_(0.6)Sr_(0.4)CoO_(3-δ)-xCe_(0.8)Sm_(0.2)O_(1.9)(PSC-xSDC,10%≤x≤40%)复合阴极材料,研究PSC-xSDC的电性能、电化学性能、热膨胀性能。结果表明:PSC、SDC之间的化学相容性良好。PSC-xSDC复合阴极材料的电导率在600~800℃中温范围内均远高于100 S/cm,PSC-xSDC中SDC最佳复合量为30%,1 000℃煅烧的PSC-30%SDC复合阴极材料与电解质接触良好,在750℃测得的界面极化电阻为0.054Ω·cm~2。PSC与SDC复合适当降低了阴极材料的热膨胀系数,PSC-30%SDC的热膨胀系数为16.77×10~(-6 ) K~(-1)。  相似文献   

14.
采用机械球磨方法制备(CeO2)0.8(SmO1.5)0.2纳米粉,并探讨了其适宜的工艺条件.分别用常规烧结和放电等离子烧结对所获纳米粉进行烧制,获得Ce0.8Sm0.2O1.9复合氧化物陶瓷,比较了两种烧结方法对材料结构与性能的影响.通过X射线衍射(XRD)、扫描电镜(SEM)等手段对氧化物进行了结构表征,交流阻抗谱测试了其电性能.结果表明:两种烧结方法所得样品均呈现单一的立方萤石结构;机械活化(CeO2)0.8(SmO1.5)0.2纳米粉于900℃时放电等离子烧结10min即可获得致密度90%以上的烧结体;放电等离子烧结材料的电导率高于常规烧结材料.  相似文献   

15.
纳米TiO2/水玻璃复合薄膜的制备及抗菌性能   总被引:2,自引:0,他引:2  
采用水玻璃作粘合剂,氟硅酸钠作固化剂,在玻璃基底上低温制备了纳米TiO2光催化薄膜,并用UV-Vis,SEM,BJH等对薄膜的紫外光吸收性能以及表面形貌和结构特征进行了分析表征.同时,也对不同TiO2浓度的薄膜进行了杀菌实验,实验结果表明:尽管催化剂颗粒部分被包埋在粘贴剂中,此复合薄膜仍具有很高的光催化活性,在室内非直射阳光下(辐照度365 nm为0.42~0.49 mW/cm2),纳米TiO2催化剂的浓度为1%左右时,光催化薄膜对大肠杆菌的杀菌率最好,达到了98.5%.  相似文献   

16.
首先采用TEMPO氧化法制备纳米纤维素(NFC),并将NFC作为碳纳米管(CNT)的分散剂,通过超声和离心处理制备出稳定分散的NFC/CNT分散液;然后通过朗伯-比尔定律测定离心处理后的NFC/CNT分散液的质量浓度,并利用原子力显微镜和Zeta电位对NFC/CNT的分散效果做进一步表征;最后将制得的NFC/CNT分散液,通过真空抽滤法制备出柔性NFC/CNT复合薄膜.扫描电镜分析表明,所制备的薄膜具有多层有序结构,并且NFC与CNT之间相互交织,形成网络结构.拉曼光谱分析进一步表明,薄膜中的NFC与CNT之间存在氢键作用.NFC/CNT复合薄膜的湿敏性能测试结果表明:不同含量的CNT对复合薄膜的湿敏性能具有重要的影响,当CNT含量为5%时,复合薄膜在95%相对湿度条件下的灵敏度高达64%,线性度拟合系数为0.982,表现出优异的湿敏性能.  相似文献   

17.
(Ba0.8Sr0.2)TiO3薄膜的室温发光行为研究   总被引:1,自引:0,他引:1  
以醋酸钡和钛酸丁酯基特殊前驱体为原料,采用溶胶凝胶法制备钛酸钡锶(Ba0.8Sr0.2)TiO3(BST0.8)铁电薄膜,研究了组织结构、微观形貌和光致发光性能.结果表明,非晶BST0.8铁电薄膜表面表现为尺寸约为20 nm左右的岛状结构,光滑致密,无裂纹和孔洞等缺陷,1μm2表面粗糙度约为1.74 am.激发波长为450nm时,在室温环境下非晶BST0.8薄膜在波长520~610 nm处发出强烈的可见光,峰值为540~570 nm,结晶态的BST0.8薄膜无发光现象.非晶BST0.8薄膜在波长330~900 nm范围表现为极高的透过率,光学透过率大于80%,最高峰值达93%.  相似文献   

18.
采用柠檬酸络合法制备了一系列La0.8Cu0.2Ni1-xMxO3(M分别为Mn、Fe和Co)钙钛矿复合氧化物.催化性能的测定结果表明:750℃焙烧制得的催化剂La0.8Cu0.2Ni0.8Mn0.2O3显示出良好的三效催化性能,能使贫燃条件下CO、NO和C3H6的起燃温度较低,分别为165℃、295℃和302℃,当温度高于400℃时完全转化.扫描电子显微镜(SEM)和X射线衍射(XRD)的测试分析结果表明:La0.8Cu0.2Ni0.8Mn0.2O3因具有良好的钙钛矿晶型结构,且为纳米级晶体,所以三效催化性能良好.  相似文献   

19.
利用甘氨酸 硝酸盐燃烧法制备不同浓度Co掺杂的La0.8Sr0.2Ga0.8-xMg0.2CoxO3-δ固体氧化物燃料电池电解质材料, 并对其晶体结构、 形貌以及电学性能进行表征. 结果表明: 随着Co掺杂量的增加, 样品无明显杂相峰, 其谱峰略向小角度一侧移动, 晶胞体积略增大,  平均粒径逐渐减小; Co掺杂对电导率影响显著, 晶粒电导率是导致样品总电导率升高的主要因素.  相似文献   

20.
用2次干燥化学共沉淀法制得高密度前驱体Ni0.8Co0.2(OH)2,使之与LiOH.H2O混合经过2个恒温阶段烧结(600℃恒温6 h、850℃恒温24 h)得到LiNi0.8Co0.2O2材料,探讨了镍源、Li/(Ni+Co)摩尔比、合成温度、合成时间等因素对产品的影响,从而优化了LiNi0.8Co0.2O2的合成工艺.所得非球形LiNi0.8Co0.2O2粉末振实密度高达2.94 g/cm3,X射线衍射分析表明该材料具有规整的层状NaFeO2结构,充放电测试表明材料具有良好的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号