首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
利用纤维增强原理对工业废弃磷石膏进行改性,提高其材料力学性能,促进废弃磷石膏的资源化利用。通过在磷石膏基体中掺入长度为3 mm和6 mm的聚丙烯纤维,共制作了78个立方体试件进行压缩试验,研究纤维掺量对磷石膏复合材料力学性能的影响。研究结果表明:聚丙烯纤维可提高磷石膏的延性,复合材料的抗压强度和弹性模量先随纤维掺量的增大而增大,超过一定值后,将随纤维掺量的增加而减小。对于3 mm长的聚丙烯纤维,掺量为2.5%时,其抗压强度达到最大值4.64 MPa,比未掺加纤维的抗压强度3.70 MPa增加25%,弹性模量达到最大值3498 MPa,比未掺纤维的弹性模量2078 MPa增加了68%;对于6 mm长的聚丙烯纤维,掺量为1.5%时,其抗压强度达到最大值4.51 MPa,比未掺加纤维的抗压强度3.70 MPa增加22%,弹性模量达到最大值3413 MPa,比未掺纤维的弹性模量2078 MPa增加了64%。  相似文献   

2.
本试验在磷石膏基体中掺入长度为3 mm的聚乙烯纤维,根据7组不同聚乙烯纤维掺量的磷石膏配合比,制作了42个100 mm×100 mm×100 mm立方体试件,对试件进行压缩试验。试验结果表明:聚乙烯增强磷石膏复合材料的破坏形态主要为劈裂破坏、X形破坏和局部破坏三种;聚乙烯纤维的掺入,可有效控制裂缝的扩展,可提高材料的强度和延性,防止脆性破坏。复合材料的抗压强度随着纤维掺量的增加,先增大,后减小;当纤维掺量在1.5%左右时,获得最大强度(约5.10 MPa),相比于未掺纤维磷石膏强度(约3.51 MPa),抗压强度提高了45.3%。通过分析应力-应变曲线,并结合东华应变测试系统,得到纤维掺量为0%和1.5%时试件的弹性模量,分别为1739.01 MPa和2700.07 MPa,可为实际工程提供参考。  相似文献   

3.
膨润土作为磷石膏吸附剂,具有较好的磷(氟)固定效果,但其混合物作为道路填筑材料时,通常无法满足力学性能要求,为探究水泥能否提高磷石膏-膨润土混合物的力学性能,以及能否协同膨润土固定磷石膏中的磷(氟)污染物,制备了掺水泥、不掺水泥以及不同掺量水泥的混合料,压制试样,并分别进行雨水淋滤模拟试验和无侧限抗压强度测试.结果表明:掺加水泥后,试样的无侧限抗压强度以及磷(氟)污染物固定效果均有所提高,在同一养护期下,水泥添加量越多,试样无侧限抗压强度越高,磷(氟)污染物固定效果越好,添加量达到5%时,试样的无侧限抗压强度可达到5.31 MPa,满足《公路路面基层施工技术规范》(JTJ 034—2000)中的要求.本文探究结果成功验证了水泥增强磷石膏-膨润土混合物强度性能及其磷(氟)污染物固定效果的可行性,为磷石膏在道路填筑材料的应用提供了一定的参考价值.  相似文献   

4.
采用较粗的聚丙烯(PP)单丝作为石膏材料的增强材料,通过抗折和抗压实验研究了单丝长度、掺量对PP单丝/石膏复合材料抗折和抗压强度的影响.抗折实验结果表明:PP单丝的掺入有利于提高复合材料的抗折强度,当掺量小于1%时,复合材料抗折强度随掺量增加而变大,当掺量为2%时复合材料抗折强度呈下降趋势;掺量相同的情况下,单丝长度越长增强效果越好,15 mm的PP单丝掺量为1%的试样抗折强度最高较空白样提高了26%;折断后试样断口中PP单丝呈拔出状,表明PP单丝与石膏材料的结合较弱.抗压实验结果表明:PP单丝的掺入降低了复合材料的抗压强度,抗压强度随掺入量增加而减小,15 mm的PP单丝掺量为2%的试样抗压强度最小较空白样减少了9.6%.  相似文献   

5.
通过抗折试验和抗折试验后小立方体抗压强度试验,探讨了纳米粒子掺量、聚乙烯醇(PVA)纤维掺量和石英砂粒径对水泥基复合材料抗折性能的影响。结果表明,纳米粒子掺量、PVA纤维体积掺量和石英砂粒径对水泥基复合材料抗折强度和抗折试验后小立方体抗压强度有较大影响。PVA纤维水泥基复合材料的抗折强度和小立方体抗压强度随着纳米Si O_2掺量增加呈先增大后减小的趋势,当纳米Si O_2掺量达到1.5%和1.0%时,抗折强度和抗压强度分别达到最大值;随着纤维体积掺量的增大,掺纳米Si O_2水泥基复合材料抗折强度和小立方体抗压强度逐渐增大,但当PVA纤维体积掺量超过0.6%时,小立方体抗压强度有逐渐降低的趋势;随着石英砂粒径的减小,抗折强度和小立方体抗压强度逐渐降低,采用粒径a石英砂配制的水泥基复合材料具有更高的抗折强度和小立方体抗压强度。  相似文献   

6.
纤维沥青混凝土动力性能试验研究   总被引:2,自引:0,他引:2  
采用变截面分离式Hopkinson压杆(Split Hopkinson Pressure Bar,SHPB),对普通沥青混凝土、玻璃纤维沥青混凝土、木质素纤维沥青混凝土和3个掺量的聚酯纤维沥青混凝土进行了3种应变率的冲击压缩试验研究.试验结果与分析表明,沥青混凝土具有应变率增强效应,其动力抗压强度及韧性指标随着应变率的增大而增大;但是,纤维沥青混凝土动力抗压强度及韧性指标增长率随应变率提高有递减趋势;纤维含量对沥青混凝土在动力条件下的动力行为有显著影响,聚酯纤维掺量为0.25%的沥青混凝土动力抗压强度及韧性指标最优;3种纤维都可以增加材料的动力抗压强度及韧性指标,聚酯纤维增强沥青混凝土抗压强度最佳,木质素纤维次之,玻璃纤维最差;聚酯纤维提高沥青混凝土韧性指标最佳,玻璃纤维次之,木质素纤维最差.  相似文献   

7.
通过立方体抗压强度和劈裂抗拉强度试验,研究了单掺及混掺玄武岩纤维和聚丙烯纤维对活性粉末混凝土(RPC)力学性能的影响规律.结果表明:两种纤维的掺加可以改善RPC力学性能;当玄武岩纤维体积掺量为0.15%,聚丙烯纤维体积掺量为0.033%时,RPC抗压强度最高,较素RPC提高了14.1%;当玄武岩纤维体积掺量为0.15%,聚丙烯纤维体积掺量为0.025%时,RPC劈裂抗拉强度最高,较素RPC提高了52.1%.通过统计分析提出了混杂纤维RPC劈裂抗拉强度计算公式,建立了RPC立方体抗压强度与劈裂抗拉强度的换算关系式,可为工程计算提供参考.  相似文献   

8.
利用美特斯(MTS)万能试验机研究了掺入不同体积掺量(0、0.5%、1.0%、1.5%)短切碳纤维、玻璃纤维、钢纤维的2层和3层玄武岩纤维织物增强水泥基复合材料的拉伸力学性能.结果表明:短切碳纤维、玻璃纤维、钢纤维均可明显增加玄武岩纤维织物增强水泥基复合材料的开裂强度,并且存在最优体积掺量;在0~1.5%掺量范围内、2层织物时,开裂强度随着3种短纤维掺量的增加而增加,掺量1.5%时最大;3层织物时,开裂强度随着碳纤维、钢纤维掺量的增加先增加后减小,掺量1.0%时达到最大值,而随着玻璃纤维掺量的增加持续增加,掺量1.5%时最大.短切碳纤维、玻璃纤维不能增加其峰值荷载,而钢纤维则明显提高其峰值荷载,2层织物时最优掺量为1.5%,3层织物时最优掺量为0.5%.  相似文献   

9.
利用原状磷石膏制备石膏基复合胶凝材料的力学性能   总被引:1,自引:0,他引:1  
以未经处理的原状磷石膏制备磷石膏基复合胶凝材料,测试磷石膏基复合胶凝材料的力学性能,考察生石灰的掺量、水灰比以及成型压力对磷石膏基复合胶凝材料力学性能的影响。结果表明:当生石灰掺量为4%时,磷石膏-矿渣复合胶凝材料具有较好的力学性能,矿渣微粉对磷石膏-粉煤灰复合胶凝材料的力学性能有增强作用。对于磷石膏-矿渣-炉渣复合胶凝材料,当成型压力超过3 MPa时,制备的材料力学性能明显下降。同浇注成型试样相比较,在5 MPa成型压力下的压实成型试样,材料孔隙率提高,特别对于200 nm以上孔所占体积分数来说,其所占体积分数要远远高于浇注成型试样,导致了材料微观结构劣化,力学性能变差。  相似文献   

10.
目的研究聚丙烯纤维对水泥土的增强增韧作用,对比聚丙烯纤维掺量对水泥净浆及水泥土力学性能的影响规律和作用机制,提高水泥土的力学性能.方法在活性矿粉改性水泥土的优化配比基础上,将适量聚丙烯纤维掺入至水泥净浆和水泥土,测定其立方体抗压强度及圆柱体劈裂抗拉强度,同时利用扫描电子显微镜观察试件的断面形貌.结果随纤维体积掺量由0逐步提高至2%,水泥净浆的抗压强度和劈裂抗拉强度均明显增大,在2%纤维掺量情况下,7 d、28 d抗压强度分别提高了62.69%和50.28%,抗拉强度提高122.28%和57.30%,7 d和28 d拉压比也分别提高至0.13和0.10.聚丙烯纤维在水泥土中表现出更为显著的增强作用,0.5%体积掺量下的28 d抗压强度提高了60.23%,但纤维掺量进一步提高反而导致强度的下降;水泥土的抗压强度随胶凝材料掺量的提高而不断增大.结论聚丙烯纤维的引入可明显提高水泥基材料如水泥土的力学性能,尤其是早期的抗拉强度和拉压比即断裂韧性,但以水泥为基本功能组分的胶凝材料仍是水泥土力学性能的基本保证.  相似文献   

11.
为了了解剑麻纤维掺入混凝土后,其物理和力学性能的变化规律,通过对不同掺量剑麻纤维水泥混凝土复合材料的工作性、力学性能、耐久性等进行试验,发现不同掺量剑麻纤维对剑麻纤维增强水泥基复合材料的坍落度、含气量、抗压强度、劈裂抗拉强度、抗折强度、耐久性等性能的变化情况,从而确定出最佳剑麻纤维的掺量范围,为进一步研究剑麻纤维增强水泥基复合材料其它性能及应用提供参考.通过试验得出在水泥混凝土中掺入剑麻纤维后能提高其抗劈裂抗拉强度和抗折强度.  相似文献   

12.
纳米粒子和PVA纤维增强水泥基复合材料抗折性能研究   总被引:1,自引:1,他引:0  
通过抗折试验和抗折试验后小立方体抗压强度试验,探讨了纳米粒子掺量、PVA纤维掺量和石英砂粒径对水泥基复合材料抗折性能的影响。结果表明,纳米粒子掺量、PVA纤维体积掺量和石英砂粒径对水泥基复合材料抗折强度和抗折试验后小立方体抗压强度有较大影响。PVA纤维水泥基复合材料的抗折强度和小立方体抗压强度随着纳米SiO2掺量增加呈先增大后减小的趋势,当纳米SiO2掺量达到1.5%和1.0%时,抗折强度和抗压强度分别达到最大值;随着纤维体积掺量的增大,掺纳米SiO2水泥基复合材料抗折强度和小立方体抗压强度逐渐增大,但当PVA纤维体积掺量超过0.6%时,小立方体抗压强度有逐渐降低的趋势;随着石英砂粒径的减小,抗折强度和小立方体抗压强度逐渐降低,采用粒径a石英砂配制的水泥基复合材料具有更高的抗折强度和小立方体抗压强度。  相似文献   

13.
为研究回收橡胶轮胎聚合物纤维(RTPF)对混凝土工作性能和基本力学性能的影响,对素混凝土(F0)、RTPF和聚丙烯纤维(PPF)混凝土进行拌合物性能测试、基本力学性能试验和纤维作用机理分析.结果表明:含气量随RTPF掺量增大而增大,且相同体积掺量(0.1%)下PPF的引气能力大于RTPF;坍落度随RTPF纤维掺量增大而降低,相同体积掺量(0.1%)下PPF比RTPF混凝土坍落度低;混凝土抗压强度随RTPF纤维掺量增大而降低;RTPF混凝土劈裂抗拉强度和抗折强度均出现了先升高后降低的趋势,RTPF体积掺量0.2%为最优纤维掺量.SEM测试表明,混凝土破坏时RTPF被拔出基体或发生拉断破坏,RTPF可有效提供桥连作用.研究表明RTPF可改善混凝土基本力学性能,并在一定掺量范围内可有效替代PPF.  相似文献   

14.
为了增强矿渣碱活性物质溶出率、提高聚合反应速率、增大聚合产物生成量,达到提高抗压强度的目的 ,以矿渣碱激发材料为研究对象,通过宏观力学性能测试结合X射线衍射与傅氏转换红外光谱微观分析,剖析氢氧化钠掺量对矿渣碱激发材料抗压强度的增强作用并进行机理分析.结果 表明,适量氢氧化钠的掺入可以显著提高试件的抗压强度.随氢氧化钠掺量提升,抗压强度呈先明显上升再显著降低的趋势,24g(5.33%)氢氧化钠掺量最佳,抗压强度达到56.8MPa(养护28d).得出NH增强作用机理与最佳掺量对指导碱激发材料工程实践应用具有重大意义.  相似文献   

15.
利用异氰酸酯含有丰富的-NCO基团,可与水进行反应,同时异氰酸酯中的苯环属于疏水性基团,可为材料提供疏水性能的特点,作为改性剂对磷石膏进行改性,提高磷石膏性能,从而实现磷石膏的资源化利用。通过开展相关实验,分别研究异氰酸酯掺入量对磷石膏试件力学性能、软化系数、磷酸根、氟离子浸出效率的影响。结果表明,当异氰酸酯掺入量为0.8%、用水量为70%,所制得的磷石膏试件指标达到:抗折强度2.5 MPa、抗压强度6.70 MPa、软化系数0.87、浸出液中氟离子浓度4.73 mg/L、磷酸根浓度11.49 mg/L;较未掺入异氰酸酯时:抗折强度提高23.15%、抗压强度提高73.13%、软化系数提高89.13%、浸出液中氟离子浓度降低58.91%、磷酸根浓度降低69.87%。  相似文献   

16.
考虑影响纤维增强水泥基复合材料(ECC)力学性能的关键因素,从抗压强度入手,基于水胶比、粉煤灰掺量、减水剂掺量等的变化,制作各批次的ECC立方体试件并进行抗压强度试验,探索ECC的力学性能随材料配比而变化的规律.研究结果表明,在其它因素都相同的条件下,PVA-ECC的立方体抗压强度随水胶比的增大而减小、随粉煤灰掺量的增加而减小、随减水剂掺量的增加先增大后减小.在普遍意义上,当水胶比为0.25、粉煤灰掺量为45%、减水剂掺量为0.5%时,PVA-ECC达到最优配比,此时立方体抗压强度达到最大.  相似文献   

17.
为探究高体积率玻璃纤维掺量(>5%)对砂浆力学性能方面的影响,从水泥试块的成型入手,对力学性能、破坏行为等方面展开研究,通过测试不同玻璃纤维长度的高体积率玻璃纤维增强水泥基材料的抗折、抗压性能,并观测、记录其破坏过程和破坏方式,分析其破坏机理和破坏行为,并通过超景深扫描电子显微镜观察玻璃纤维断裂情况。研究结果表明,随着玻璃纤维体积掺量的提升,抗折和抗压性能初始有大幅度提升,分别达到38.6 MPa、55.4 MPa,在7%玻璃纤维掺量时基本平稳,掺量超过10%时成型困难;掺量在7-10%时,抗折应力-应变曲线出现明显的塑性特征。  相似文献   

18.
该文研究了保水剂和掺合料对面层脱硫粉刷石膏凝结时间、粘结强度、抗折抗压强度以及其保水率等的影响,结果表明,保水剂可以有效增大粉刷石膏保水率,使粘结强度增强,但会降低面层粉刷石膏的抗折、抗压强度,保水剂的最佳掺量为脱硫建筑石膏的0.2%;重钙作为掺合料加入粉刷石膏中时,粉刷石膏凝结时间变小;随着重钙掺量的增加,粉刷石膏的凝结时间逐渐增加,力学性能呈现先增加后下降的趋势,重钙在粉刷石膏中的最佳掺量为40%。  相似文献   

19.
花岗岩石粉-高韧性水泥基复合材料的制备与性能   总被引:1,自引:0,他引:1  
研究了掺花岗岩石粉的高韧性水泥基复合材料的基本力学性能。采用废弃花岗岩石粉部分取代磨细砂,制备具有不同石粉质量取代率的水泥砂浆;并对其进行抗压、抗折试验分析,得到最优的石粉取代率约为25%;在此最优石粉取代率的基础上配制出掺花岗岩石粉的高韧性水泥基复合材料;并研究聚乙烯醇(PVA)纤维体积掺量(0~1.5%)及其长径比(158~316)对混凝土复合材料基本力学性能的影响。研究结果表明,试验中,当花岗岩石粉掺量一定时(25%),纤维体积掺量1.5%且长径比237时电镜扫描显示纤维与基体界面结合最紧密,力学性能最佳,此时的极限拉应变高达3.03%,约为普通水泥基材料的300倍。  相似文献   

20.
为了利用新疆地区的沙漠砂和粉煤灰制备新型沙漠砂水泥基材料,以缓解普通砂资源供应不足的形势,本文开展沙漠沙-PVA纤维水泥基复合材料配合比的试验研究。以抗压强度、劈裂抗拉强度、流动度为评价指标,先通过单因素试验确定水泥基体中原材料的合理掺量范围,再以抗压强度和劈裂抗拉强度为评价指标,并由正交试验结果的极差分析得出各因素对评价指标影响的主次顺序和最优组合,最后通过对评价指标的综合分析确定出以下最优配合:当沙漠砂掺量为3、粉煤灰掺量为2.5、水胶比为0.36、可再分散性乳胶粉掺量为0.04、纤维掺量为2%时,可制备出轴心抗压强度为28.72 MPa、立方体抗压强度为42.11 MPa、劈裂抗拉强度为3.40 MPa、抗折强度为11.61 MPa的沙漠砂-PVA纤维增强水泥基材料。本文研究结果表明利用沙漠砂、粉煤灰和PVA纤维制备绿色环保的新型材料是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号