首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
目前说话人、环境及发音多样性仍是语音识别声学建模中需解决的主要难题,为了克服这些不利因素的影响,本文将经过三层结构优化后的卷积神经网络应用于语音识别,利用卷积神经网络的卷积不变性克服语音信号的多样性,采用更符合生物神经元特性的新型激活函数改进卷积层缓解梯度消失的问题;利用中间池化方法改进池化层、减小特征提取误差,使用卷...  相似文献   

2.
基于BPNN/HMM神经网络的声学模型研究   总被引:1,自引:0,他引:1  
研制了一种基于BP神经网络和隐马尔可夫模型(HMM)的混合声学模型,BP神经网络的主要功能是把失真语音特征矢量转换成纯净语音特征矢量,而删则对转换后的纯净语音特征矢量进行分类,从模型级补偿的方面来提高语音识别系统的鲁棒性.讨论了一种基于线性预测的MKCC语音特征提取方法,该方法把提取出的失真语音特征矢量作为神经网络的输入,从而实现了特征参数级去噪处理的目的.  相似文献   

3.
4.
传统手势识别方法需要人工选取特征,选取的特征往往很难适应手势的多变性,从而极大地影响了手势的识别率;提出了一种基于肤色特征和卷积神经网络的手势识别方法;首先采用椭圆肤色模型对复杂背景下的手势样本进行分割,将分割出的手势区域进行二值化和归一化处理,然后构建了一种卷积神经网络对处理过的手势样本进行迭代训练,提取出各类手势关键的高维特征,进而得出手势识别模型;通过该方法训练出的手势模型能够自主地对给定的手势图像进行特征提取和手势分类;实验表明:该手势识别方法在测试集上具有较高的识别率;在现实场景的测试中,该方法也取得了良好的手势识别效果,且实时性和鲁棒性较好。  相似文献   

5.
6.
基于卷积神经网络的连续语音识别   总被引:3,自引:0,他引:3  
在语音识别中,卷积神经网络( convolutional neural networks,CNNs)相比于目前广泛使用的深层神经网络( deep neural network,DNNs),能在保证性能的同时,大大压缩模型的尺寸。本文深入分析了卷积神经网络中卷积层和聚合层的不同结构对识别性能的影响情况,并与目前广泛使用的深层神经网络模型进行了对比。在标准语音识别库TIMIT以及大词表非特定人电话自然口语对话数据库上的实验结果证明,相比传统深层神经网络模型,卷积神经网络明显降低模型规模的同时,识别性能更好,且泛化能力更强。  相似文献   

7.
小图像由于像素少、分辨率低、整幅图像包含信息较少,识别较为困难。目前优秀的深度卷积神经网络模型多为大图像而设计,而用于小图像的模型则存在着层次不够深、难以对特征进行充分抽象的不足。本文基于VGG19模型,依据卷积核分解的原理,设计了一种KDS-DCNN模型,模型深度达到31层,解决了目前超深度模型不能直接用于小图像识别的问题,实验表明该方法不但提升了识别性能,而且还降低了模型的时间复杂度。在CIFAR-10、CIFAR-100和SVHN三个数据集上的验证结果显示,KDS-DCNN模型性能优越,其识别错误率分别降低到29.46%、6.02%和2.17%。  相似文献   

8.
为了兼顾视频人脸识别中识别准确率和实时性,提出了基于卷积神经网络(CNN)和CUDA加速的实时视频人脸识别方法。构建了一个6层结构的CNN人脸识别网络,在视频帧中通过Adaboost算法检测到的人脸输入所构建的CNN中进行视频人脸识别,结合CUDA并行计算架构,对算法进行加速。此外为了更适用于实际视频监控情况,通过对CNN网络结构末尾Softmax分类器的分类结果进行多级判决引入了开集人脸识别功能。从多个角度对该方法进行了实验验证,结果证明,此方法可满足识别准确率和实时性要求,同时对于视频中人脸姿态变化、光照变化、距离远近等都具有良好的鲁棒性。  相似文献   

9.
针对目前手绘草图识别难度大,识别准确率低且主要以手工提取特征为主,提出一种新的卷积神经网络结构DCSN( Deeper-CNN-Sketch-Net) 进行手绘图像识别。DCSN 模型是根据手绘草图的特点进行设计,如在首层采用了更大的卷积核获取草图的结构信息和更小的步长尽可能多保留特征信息,通过增加网络层数加深网络深度等。为进一步提高识别准确率,针对手绘草图的特点提出了两种新的数据增强方法,小图形缩减策略和尾部移除策略增加数据集的多样性,并利用扩充的数据集训练DCSN 网络。经实验验证,所提出的模型在目前最大的手绘图像数据集上可以取得70. 5% 的识别准确率,超过了目前存在的几种主流的手绘草图识别方法。  相似文献   

10.
将深度神经网络作为声学模型引入面向汉语电话自然口语交谈语音识别系统。针对自然口语中识别字错误率较高的问题,从语音的声学特征类型选择、模型训练时元参数调节以及改善模型泛化能力等方面出发,对基于深度神经网络的声学模型建模技术进行了一系列的优化。针对训练样本中状态先验概率分布稀疏的情况,提出了一种状态先验概率平滑算法,在一定程度上缓解了这种数据稀疏问题,经平滑后,字错误率下降超过1%。在所采用的3个电话自然口语交谈测试集上,相对于优化前的深度神经网络模型,经过优化后的模型取得了性能的一致提升,字错误率平均相对降低15%。实验结果表明,所采用优化策略可以有效地改善深度神经网络声学模型性能。  相似文献   

11.
针对已提出的很多烟雾检测方法中都是基于手工制作的特征或者使用原始图片直接作为神经网络的输入,减少了深度学习的鲁棒性。为解决这些问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的烟雾检测方法。使用图片归一化方式消除光照的影响,利用烟雾颜色检测烟雾候选区域,CNN自动提取烟雾候选区域的特征,进行烟雾识别,根据分类结果得到报警信号。针对烟雾产生初期烟雾区域相对较小的问题,利用扩大候选区域的策略提高烟雾检测的及时性。由于训练数据少或不平衡引起的过度拟合,使用数据增强技术从原始数据集生成更多训练样本解决该问题。实验结果表明,该方法能有效地检测烟雾,且具有更高的准确率和更好的鲁棒性。  相似文献   

12.
针对在有冗余图像信息干扰下进行人脸有效特征点提取时精度不高的问题,提出了基于级联卷积神经网络的人脸特征点检测算法.在该算法中:输入层读入规则化的原始图像,神经元提取图像的局部特征;池化层进行局部平均和降采样操作,对卷积结果降低维度;卷积层和池化层分布连接,迭代训练,输出特征点检测结果.该算法采用Python语言编程实现,在人脸数据集进行仿真实验,结果表明该算法对人脸特征点有较高的识别率.  相似文献   

13.
为了提高卷积神经网络(CNN)的泛化性和鲁棒性,改善无人机航行时识别目标图像的精度,提出了一种CNN与概率神经网络(PNN)相结合的混合模型。利用CNN提取多层图像表示,使用PNN提取特征对图像进行分类以替代CNN内部的BP神经网络,采用均方差和降梯度法训练模型,通过将预处理的图像传输到CNN-PNN模型,对图像纹理和轮廓进行分类识别,并将此模型的仿真结果与卷积神经网络模型、卷积神经网络-支持向量机模型的结果进行对比。仿真结果表明,与其他两种模型相比,CNN-PNN模型具有更好的精准度,识别率高达96.30%。因此,CNN-PNN模型能够快速有效地识别图像,准确度和实时性较高,在图像识别等方面具有很好的应用前景。  相似文献   

14.
为了更好地提取并融合人体骨架中的时序特征和空间特征,文章构建了融合时空域注意力模块的多流卷积神经网络(AE-MCN):针对目前大多数方法在建模骨架序列相关性时因忽略了人体运动特性而没有对运动尺度进行适当建模的问题,引入了自适应选取运动尺度模块,从原尺度动作特征中自适应地提取关键时序特征;为了更好地对特征进行时间维度和空间维度上的建模,设计了融合时空域的注意力模块,通过对高维时空特征进行权重分配,进而帮助网络提取更有效的动作信息。最后,在3个常用的人体动作识别数据集(NTU60、JHMDB和UT-Kinect)上进行了对比实验,以验证AE-MCN网络的有效性。实验结果表明:与ST-GCN、SR-TSL等网络相比,AE-MCN网络都取得了更好的识别效果,证明AE-MCN网络可以对动作信息进行有效的提取与建模,从而获得较好的动作识别性能。  相似文献   

15.
提出运用双层卷积神经网络模型实现基于足底压力图像的步态识别方法.首先,对足底压力数据采集系统采集的图像作相应预处理;然后,用双层卷积神经网络模型学习得到足底压力图像的单层和双层卷积特征;最后,将卷积特征训练分类器得到分类结果.实验结果验证了该算法的有效性.  相似文献   

16.
近年来卷积神经网络(convolutional neural network,CNN)在行为识别任务中取得了较大的进展.然而,现有的神经网络方法往往只注重高层语义信息的利用,对浅层特征信息挖掘利用不够.针对这一问题,提出一种基于3D卷积(convolution 3D,C3D)的多尺度3D卷积神经网络的行为识别方法.该方法受到特征金字塔结构的启发,在原C3D的基础上融合C3D的浅层特征信息,实现端到端的行为识别.同时该方法以现有的深度学习理论为基础,利用迁移学习的思想,将C3D和该方法中相同模块部分的参数迁移到本方法中,以降低模型的训练时间.通过在UCF101数据集上进行实验,实验结果表明,提出行为识别方法的分类精度达到84.56%,分类效果优于原C3D分类网络.  相似文献   

17.
基于卷积神经网络的细胞图像分割与类型判别   总被引:1,自引:0,他引:1       下载免费PDF全文
组织细胞图像形态各异、大小不一、纹理变化多样等特点,导致难以精准地分割细胞区域的问题,对此提出了一种基于卷积神经网络(CNN)和边缘聚类方法的新算法.对原始切片采用染色校正预处理,提高色彩对比度,利用CNN得到初步分割结果,结合边缘聚类方法提升初步分割结果的连续性和完整性.在此基础上,结合计算机视觉技术,获得分割图像中细胞颗粒的基本属性特征,并使用Softmax分类器判别细胞类型.实验结果表明:相较于经典的卷积神经网络、阈值分割、模糊聚类等细胞图像分割算法,该算法在分割结果的完整度方面提升了6.15个百分点.  相似文献   

18.
为了提高人工神经网络处理动态信号能力 ,在时延神经网络 ( TDNN )和卷积神经网络 ( CNN)的基础上 ,针对孤立音节的特点 ,提出了一个新的网络结构 ,研究了其学习算法。新网络在进一步改进后用于汉语孤立数码语音识别 ,对特定人和非特定人任务 ,分别达到了 97.7%和 95 .6%的正确识别率 (无拒识 ) ,其性能远远高于多层前向感知机( ML P)和时延神经网络 ,与传统的隐马尔科夫模型 ( HMM)方法是可以相比的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号