共查询到19条相似文献,搜索用时 125 毫秒
1.
针对滚动轴承全寿命周期监测数据不足导致剩余寿命预测精度不高的问题,提出一种基于时间序列数据扩增和双向长短时记忆(bidirectional long-short term memory, BLSTM)网络的剩余寿命预测方法。首先,采集训练用滚动轴承全寿命周期振动加速度和测试轴承振动加速度数据。其次,对采集得到的原始数据预处理后提取健康因子,将训练用数据和测试数据分别构成参考数据集和目标数据集。然后,以参考数据集为基础,利用动态时间规整算法扩增目标数据集数据。最后,使用数据扩增后的测试数据训练BLSTM网络,利用训练好的BLSTM网络预测滚动轴承性能退化趋势和剩余寿命。实验结果表明,基于动态时间规整算法的数据扩增模型能够根据已有全寿命周期数据,扩增性能退化过程相似的滚动轴承运行数据,利用扩增数据训练BLSTM网络,能够有效提高性能退化趋势预测能力,进而提高剩余寿命预测精度。 相似文献
2.
大型机械设备中旋转机械占到总量的80%,为及时掌握其工作状态,开展如何旋转机械轴承的寿命预测精度的仿真研究.首先,通过可靠性数值(confidential value,CV)量化评估工作状态;然后,利用数据变换和累加积分的方法优化数据平滑性与背景值来改进灰色模型;并与长短时记忆网络结合为新预测模型来预测系统工作状态;最... 相似文献
3.
自理能力是老年人健康状况的重要指标,但其与剩余寿命之间的关系一直缺乏严格的量化研究.本文根据中国营养健康调查中不小于55岁人群的自理能力面板数据,构建随机滤波模型预测其剩余寿命概率分布,并采用拟合优度检验测试模型的准确度.研究结果表明,自理能力和健康状况有着密切的关系,是老年人剩余寿命的重要指征;在生化指标难以得到时,构建的模型可以通过观察老年人的自理能力有效地预测其寿命分布.这为人群健康管理所倡导的关注老年人自理能力提供了科学依据,并对人寿保险公司根据老年人自理能力来确定寿险的费率提供了重要参考. 相似文献
4.
齿轮箱是风力发电机组的关键部件,对风力发电机的整体寿命有直接影响.针对齿轮箱的剩余寿命,提出了一种多退化量下的剩余寿命预测方法.首先,在分析齿轮箱寿命的影响因素基础上,选取齿轮箱的振动加速度和噪声作为退化量;其次,采用基于核估计和随机滤波理论的方法分别对齿轮箱的振动加速度和噪声进行建模,从而获得齿轮箱的剩余寿命概率密度函数,进而得到其边缘分布函数;再利用Copula函数表示齿轮箱的振动加速度和噪声之间的随机相关性,求得齿轮箱剩余寿命的联合分布函数,从而得到齿轮箱剩余寿命的联合概率密度函数,得到齿轮箱剩余寿命预测值;最后,提出基于赤池信息准则模型评价的Copula函数选择方法.通过齿轮箱的试验验证了该方法的有效性. 相似文献
5.
针对机械设备的关键退化信息易淹没在非线性、多维度、长时间、大规模监测数据中的问题,提出了一种基于残差卷积神经网络和注意力双向长短时记忆网络融合(residual convolutional neural network-attentional bidirectional long short-term memory network, RCNN-ABiLSTM)的机械设备剩余寿命预测方法。首先通过训练RCNN提取监测数据的深度空间特征;然后通过引入注意力机制,优化双向长短时记忆网络提取时间相关特征的权重参数,加强关键退化信息对剩余寿命预测的表达;最后通过航空发动机数据集验证了方法的有效性。分析结果表明,对于运行条件复杂和故障模式多变的多维监测数据,所提方法能够准确寻找退化时间点,有效提高长时间运行设备的剩余寿命预测准确度。 相似文献
6.
目标轨迹预测是保证目标航行安全、规划飞行航迹和搜寻空中目标等任务的关键技术,在军事和交通管制等方面具有重要意义。针对传统飞行目标轨迹预测方法模型较为简化且预测精度较低的问题,提出了基于卡尔曼滤波算法展开的深度神经网络模型,用于飞行目标的轨迹预测任务。该模型通过长短时记忆(long short-term memory, LSTM)网络从目标的航迹数据中学习目标的运动状态,再利用卡尔曼滤波算法对LSTM预测的目标状态估计值进行动态修正,其有效结合了卡尔曼滤波算法和深度神经网络各自的优势。在仿真数据和真实数据上的实验验证了所提模型较其他网络模型对飞行目标轨迹预测的准确性和有效性优势。 相似文献
7.
针对航空发动机结构复杂、性能退化参数众多、寿命预测精度低等问题,提出了一种基于退化特征相似性的寿命预测方法。首先通过基于Relief算法的退化特征筛选、基于主成分分析(principal component analysis,PCA)的特征提取和基于核函数的特征平滑,提取低维正交多变量退化特征;然后进行特征的相似性匹配,寻找与当前样本特征片段最相似的一组历史样本中的特征片段集合,将这些片段对应的RUL信息融合并采用密度加权方法得到当前样本的寿命预测估计值;最后通〖JP2〗过美国国家航空航天局(national aeronautics and space administration,NASA)提供的航空涡轮扇发动机仿真数据集验证了该方法的有效性,其寿命预测性能高于现有几种代表性方法。 相似文献
8.
针对航空发动机全寿命周期数据对性能衰退不够敏感的问题,提出一种基于综合指标多阶段相似的寿命预测方法.首先,使用参数变化幅度、参数起始值差异和参数失效值差异对多个传感器参数进行筛选,将符合综合标准的参数融合成综合指标.然后,采用移动相似性匹配的方法分别对整阶段和半阶段进行最优多模型选取,将两个阶段的最优多模型寿命预测结果... 相似文献
9.
基于退化与寿命数据融合的产品剩余寿命预测 总被引:2,自引:0,他引:2
产品的剩余寿命预测是其维修、更换和备件策略制定的重要依据。目前的寿命预测方法一般仅利用产品自身的性能退化数据,当性能退化数据较少时,剩余寿命预测结果精度难以保证。针对性能退化过程为具有随机效果的Wiener过程的产品,对其进行寿命预测时,采用Bayes方法融合产品的历史寿命信息和该产品自身的性能退化信息,得到性能退化参数的Bayes估计,进而得到该产品的剩余寿命分布,从而提高剩余寿命分布的预测精度。金属化膜脉冲电容器剩余寿命预测分析实例表明了该方法的有效性。 相似文献
10.
针对传统基于加速退化建模的剩余寿命在线预测方法需在特定共轭分布条件下才能实现漂移系数和扩散系数同步更新的问题,提出一种基于比例关系加速退化建模的设备剩余寿命在线预测方法.首先,在传统Wiener退化模型中引入扩散系数与漂移系数的比例关系,从建模角度保证了扩散系数与漂移系数同步更新的可能性.其次,提出一种基于两步极大似然... 相似文献
11.
Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL) prediction of the equipment. The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function. This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model. Based on the historical me... 相似文献
12.
针对传统基于相似性的剩余寿命(remaining useful lifetime, RUL)预测方法未考虑运行条件差异, 从而影响预测准确性及部件储备策略科学性的问题, 提出一种基于改进相似性的装备部件RUL预测及经济性储备策略。基于提出的改进相似性方法, 区分装备部件的运行条件类别, 通过各类别内服役部件和参考部件的性能状态相似性, 预测服役部件的RUL; 基于RUL预测结果, 以装备部件维修储备总费用最低为目标, 以资源利用率为约束, 建立经济性储备策略决策模型; 采用差分进化算法对模型寻优求解, 得到最优装备部件储备策略。实例分析表明, 所提方法能够有效提升RUL预测的准确性和部件储备策略的科学性, 具备工程应用价值。 相似文献
13.
Remaining useful life (RUL) estimation is termed as one of the key issues in prognostics and health management (PHM). To achieve RUL estimation for individual equipment, we present a degradation data-driven RUL estimation approach under the collaboration between Bayesian updating and expectation maximization (EM) algorithm. Firstly, we utilize an exponential-like degradation model to describe equipment degradation process and update stochastic parameters in the model via Bayesian approach. Based on the Bayesian updating results, both probability distribution of the RUL and its point estimation can be derived. Secondly, based on the monitored degradation data to date, we give a parameter estimation approach for non-stochastic parameters in the degradation model and prove that the obtained estimation is unique and optimal in each iteration. Finally, a numerical example and a practical case study for global positioning system (GPS) receiver are provided to show that the presented approach can model degradation process and achieve RUL estimation effectively and generate better results than a previously reported approach in literature. 相似文献
14.
针对设备剩余使用寿命预测问题, 提出一种基于多源信息融合与隐马尔可夫模型的预测方法。首先, 针对发动机结构复杂、监控数据参数多等问题, 提出一种基于传感器信噪比和主成分分析(principal component analysis, PCA)降维的多源传感器数据融合方法。在此基础上, 利用样本数据训练高斯混合隐马尔可夫模型, 同时为降低模型偏差并避免过拟合风险, 提出一种“定制”策略训练方法, 训练后的模型可用于系统健康状态识别和剩余使用寿命预测。最后, 通过美国国家航空航天局公开的航空发动机仿真数据集对所提方法进行了验证, 并与几种具有代表性且预测精度较高的文献方法进行了比较分析, 验证了方法的有效性。 相似文献
15.
弹道导弹主动段长周期轨迹预报能够为导弹防御系统提供早期预警信息。传统的轨迹预报方法大多集中在导弹的自由段与再入段,通过解析法、数值积分法或函数逼近法推断未来时刻目标的状态。由于弹道导弹在主动段会受到多个未知作用力的影响,其轨迹预报相比自由段与再入段更具挑战性。为此,本文提出了一种基于长短时记忆(long short-term memeory, LSTM)网络的弹道导弹主动段轨迹预报方法。首先,根据导弹主动段动力学模型与弹道参数典型取值生成用于网络训练的大规模轨迹样本;其次,设计了基于深度LSTM网络的弹道导弹主动段轨迹递归预报方法;最后,与基于数值积分法、多项式拟合及反向传播神经网络的轨迹预报方法的实验对比,表明了所提方法在主动段轨迹预报上的优越性。 相似文献
16.
精确的航空安全预测是科学开展安全预警的前提.航空事故不仅致因机理复杂,还存在迟滞效应,给安全样本时序信息的深度挖掘加大了难度.基于此,提出一种基于改进长短期记忆(long short-term memory,LSTM)模型的航空安全预测新方法.首先基于相关系数热图优选致因指标,再以步进搜索和Adam算法相结合的方式优化... 相似文献
17.
隐含非线性退化设备的剩余寿命在线预测方法 总被引:1,自引:0,他引:1
随机退化设备在实际运行中会产生非线性、隐含性等问题,对其剩余寿命预测会产生不确定性影响。现有剩余寿命预测方法尚未系统研究隐含非线性退化建模及相应的剩余寿命分布。因此,采用Wiener过程,建立了隐含双重非线性退化模型;利用设备现场监测数据,更新了隐含状态的后验分布;利用全概率公式,基于首次达到失效阈值的时间分布推导出设备剩余寿命分布;基于激光器实测退化数据设定仿真参数,对所提方法的正确性和合理性进行了对比验证。 相似文献
18.
针对高速移动正交频分复用系统, 提出了一种基扩展模型(basis expansion model, BEM)下基于长短期记忆(long short-term memory, LSTM)神经网络的时变信道预测方法。为了降低传统BEM的建模误差, 根据高速移动环境中不同列车在相同位置处的无线信道具有强相关性的特点, 首先基于历史时刻的信道状态信息获取最优的基函数, 并利用该基函数对信道进行建模。然后, 通过LSTM神经网络对信道基系数进行线下训练与线上预测来获取未来时刻信道信息, 大大降低了计算复杂度。在线下训练中, 将网络的逼近目标设置为信道估计值, 而不是理想的信道信息, 以增强预测模型的实用性。仿真结果表明, 相比现有方法, 新方法的计算复杂度较低, 且预测精度较高。 相似文献
19.
针对弹道导弹等超远程攻击目标的轨迹难以预测的问题,提出一种基于长短期记忆(long short-term memory, LSTM)网络与一维卷积神经网络(1-dimensional convolutional neural network, 1DCNN)的目标轨迹预测方法。首先,建立三自由度导弹运动模型,依据再入类型设计3种目标轨迹数据,构建机动数据库,解决轨迹数据的来源问题。其次,采用重复分割与滑动窗口的方法对轨迹数据进行预处理。然后,基于LSTM与1DCNN设计了一种目标类型分类网络,对目标进行初步分类。最后,基于1DCNN设计轨迹预测网络,对目标轨迹进行预测。仿真结果表明,提出的轨迹预测网络能够完成轨迹预测任务,预测误差在合理范围内。 相似文献