首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
针对目前雷达干扰识别方法存在人工特征提取难、强噪声环境下识别率不高的问题,提出了一种基于长短时记忆(long short-term memory, LSTM)网络和残差网络相结合的雷达有源干扰识别方法。输入有源压制干扰原始时域序列数据,搭建深度学习网络模型对不同干噪比下的干扰信号进行分类识别。仿真结果表明:在干噪比为0 dB的情况下,该方法对4类雷达有源干扰信号的识别准确率均高于98.3%,与单纯的残差网络和卷积神经网络(convolutional neural networks, CNN)等其他深度学习算法相比,具有更佳的网络性能,验证了该算法的有效性。  相似文献   

2.
针对小样本条件下通信信号识别准确率不高、网络训练困难的问题, 本文提出一种基于残差生成对抗网络的调制识别算法。首先, 设计一种以Leakyrelu作为隐藏层激活函数的新残差单元, 使得网络对输入为负值的数据也可以进行梯度计算; 然后, 将新残差单元组成的残差网络和卷积神经网络作为本文算法的基本网络结构, 使用卷积步幅为1的非对称小卷积核, 更好地提取信号的边缘特征信息; 最后, 用Dropout代替池化操作, 并选择Adam梯度优化算法以交替迭代方式完成网络训练。仿真实验结果表明, 小样本条件下, 残差生成对抗网络算法复杂度明显降低, 信噪比(signal to noise ratio, SNR)在0 dB以上时, 对10种调制信号的识别准确率可以达到91%, 验证了所提方法的有效性。  相似文献   

3.
Multi-h连续相位调制(continuous phase modulation, CPM)信号与其调制指数均值相等的Single-h CPM信号的特征具有极大相似性,难以区分。针对该问题,提出了一种基于近似熵的Multi-h CPM调制识别算法。该算法将信号按照相同调制指数为一组的方式拆分为多个子序列,通过舍弃符号间拼接产生的多余模式向量对近似熵进行修正,然后利用Multi-h CPM信号各子序列近似熵的差异性,完成Multi-h CPM信号和Single-h CPM信号的类间识别,最后利用概率神经网络完成类内识别。实验结果表明,该算法在信噪比低至11 dB时,仍可以达到90%的识别率。  相似文献   

4.
传统辐射源信号识别方法往往需要人工提取特征,不仅对专业知识要求较高,而且人为选择的特征不能够保证适用于大多数类型信号的识别,识别精度和识别速度也不能兼顾.针对上述问题,将语音处理领域常用的深度学习模型——卷积长短时深度神经网络(convolutional long short-term deep neural netw...  相似文献   

5.
针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题, 提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network, AT-CNN-BiLSTM)融合的信道预测方法。该方法由信号预处理、网络训练和信号预测3部分组成。首先在高斯白噪声条件下模拟室外卫星信号, 得到卫星信号的训练集和测试集; 然后将训练集输入构建的训练网络进行特征提取; 最后将测试数据输入网络进行预测分析。仿真结果表明, 在与其他4种人工智能方法的对比中, 所提出的混合神经网络能够在较快的收敛速度下达到较高的准确率(91.8%), 有效地缓解了低轨道卫星信道参数“过时”的现状, 对提升卫星通信质量和节省卫星信道资源有良好的改善作用。  相似文献   

6.
针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔统计确定k值,构建交通流矩阵模型,采用CNN-LSTM网络处理具有时空特征的短时客流。该模型能够对具有空间相关性的数据进行较为准确的预测。使用真实数据集对模型进行检验和参数调优,实验结果表明:k-CNN-LSTM模型较其他模型有相对较高的预测精度。  相似文献   

7.
针对卷积神经网络提取的信号时序特征受限问题,提出一种截断迁移的数据预处理算法,将采样矩阵一端的距离单位截断,迁移到另一端,依次合并成新的矩阵,使卷积神经网络提取到更多的采样点,比较更多的符号信息。同时提出一种改进的并行残差神经网络,通过两路并行的支路同时关注水平和垂直2个方向的特征。结果表明,该算法比普通卷积网络提高约10%的准确率,改进的网络在信噪比为14 dB时,准确率为93.78%,信噪比大于0 dB时,准确率均在91%以上。  相似文献   

8.
基于RBF 神经网络的调制识别   总被引:1,自引:0,他引:1  
针对通信信号这种非稳定的、信噪比(SNR)变化范围较大的信号,利用遗传算法训练的径向基神经网络分类器对各种调制信号的特征矢量进行分类识别,充分发挥径向基神经网络的广泛映射能力和遗传算法的全局收敛能力,并在遗传算法中加入了梯度下降算子,克服遗传算法收敛速度慢的缺点,加快了遗传算法训练神经网络的速度,使得分类器的识别率和鲁棒性得到明显改善。仿真实验的结果证明了此方法的有效性和可行性。  相似文献   

9.
针对当前非协作通信中多输入多输出正交频分复用(multiple-input multiple-output orthogonal frequency division multiplexing, MIMO-OFDM)系统子载波的调制识别问题,提出了一种基于一维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)的调制识别方法。首先,利用特征矩阵的联合近似对角化(joint approximate diagonalization of eigenvalue matrix, JADE)算法从接收端的混合信号中恢复发送信号;然后,提取恢复信号的循环谱切片和四次方谱作为浅层特征;最后,利用1D-CNN对特征进行训练,使用测试样本对所提出的调制识别方法进行仿真验证。仿真结果表明,所提方法对MIMO-OFDM系统中的5种信号可以进行有效识别,在信噪比为10 dB时的识别精度即可达到100%。  相似文献   

10.
飞行动作识别是飞行训练评估和空战智能决策等多项关键技术的基础, 实现飞行动作的快速高效识别具有重大意义。对此, 提出一种基于神经网络符号化模型的方法, 实现对基本飞行动作和复杂飞行动作高效识别。首先, 利用微分分割的思想对飞行参数进行切片处理, 然后通过卷积神经网络(convolutional neural networks, CNN)和长短期记忆(long-short term memory, LSTM)神经网络实现飞行动作的模块化处理, 有效代替了传统方法中对原始数据的逻辑推理。并且该方法可以利用基本飞行动作对飞行过程实现飞行数据分割, 具有良好的扩展性, 能够快速处理批量飞参数据。最后对13种基本飞行动作、两种复杂飞行动作和整段飞行数据进行仿真实验。仿真结果表明, 该方法具有良好的识别性能。  相似文献   

11.
自动调制识别在频谱监测和认知无线电中占有重要地位.针对现有调制识别算法在低信噪比条件下识别率低的问题,提出一种基于生成对抗网络(generative adversarial network,GAN)和卷积神经网络(convolu-tional neural network,CNN)的数字信号调制识别方法.在利用平滑伪W...  相似文献   

12.
针对空时分组码(space-time block code,STBC)识别中多种编码类型难区分的问题,提出了一种基于卷积神经网络的STBC盲识别算法.该算法首先将接收信号采用自相关函数的频域预处理,输入到卷积神经网络中对信号特征进行提取,全连接层对特征进行映射,实现对6种STBC类型的识别.仿真实验结果表明,在无信道和...  相似文献   

13.
现有低分辨雷达目标识别方法,通常采用先特征提取、再进行目标分类的两步识别算法,这种算法存在识别率难以提高和方法泛化性不足的问题,对此,提出一种增强条件生成对抗网络(strengthening condition generative adversarial network,SCGAN)+卷积神经网络(convolutional neural network,CNN)的低分辨雷达目标一步识别算法。该算法利用CNN自动获取采样数据深层本质特征,无需特征提取,实现对目标的一步识别。为进一步提高小样本条件下的识别效果,基于CGAN理论来提高样本在特征空间的覆盖程度,并对CGAN的判别器进行改进,在损失函数中增加混叠惩戒项,通过SCGAN生成不混叠的生成样本来更好地训练CNN,提高其在小样本条件下的识别能力。仿真对比实验校验了一步识别算法较传统两步识别算法的优越性,以及SCGAN+CNN的低分辨雷达目标一步识别算法在小样本条件下的有效性。  相似文献   

14.
针对当前通信信号调制识别算法在低信噪比(signal-to-noise ratio,SNR)下识别率低、训练速度慢、识别调制类型少的问题,提出了基于信息熵特征和遗传算法-超限学习机(genetic algorithm-extreme learning machine,GA-ELM)的调制识别算法。首先,提取信号的4种熵特征:奇异谱香农熵、奇异谱指数熵、功率谱香农熵和功率谱指数熵作为调制识别的特征参数;其次,采用GA-ELM作为分类器。仿真实验表明,对11种模拟、数字调制信号进行分类识别,在SNR大于4 dB时算法的总体识别率均超过98%,同时该算法训练速度快,识别系统设计简单,具有较大的应用价值。  相似文献   

15.
针对当前通信系统所采用的主要调制方式,提出了一种基于卷积神经网络和稀疏滤波的调制识别方法。首先,分析了利用信号循环谱二维灰度图进行通信信号调制识别的可行性;然后,通过降采样和裁剪技术对循环谱图预处理;最后,设计了深度卷积神经网络架构,并提出了稀疏滤波预训练的方法。仿真结果表明:相比于经典的基于深度学习的调制识别方法,该方法模型简单,优化量少,且在小样本场景下性能最佳,具有很高应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号