首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
多层高反膜的理论设计与光学特性研究   总被引:1,自引:0,他引:1  
王珊 《科技资讯》2008,(32):148-148
利用软件Essential Macloed对光学多层介质反射膜作了理论设计:用packing density的概念模拟了多孔薄膜,实现了材料折射率的可调节;通过计算分析了非四分之一波长膜系的光学特性,得出倍频反射带反射率随高折射率膜层厚度变化的关系,该结果对于特殊膜系的设计具有一定的理论指导意义。  相似文献   

2.
YAG 晶体棒端断上的硬质氧化物高反膜是采用TiO:和ZrO:混合物做高折射率材料,SiO_2做低折射率材料,交替λ/4多层硬质介质膜系,以提高激光器使用寿命.现已取得满意结果,并在实际中使用.1 反射原理1.1 如何确定高反射带用折射率高、低交替的λ/4厚度介质膜系,只要层数足够多,能得到近于100%高的反射率.多层介质膜特征矩阵的基本周期矩阵表达式为:  相似文献   

3.
多层高反膜的理论设计与光学特性分析   总被引:5,自引:0,他引:5  
从理论上对光学多层介质反射膜作了设计,用堆积密度的概念模拟了溶胶-凝胶法制备的纳米多孔薄膜的折射率;利用反射率增幅分析与膜层制备难度分析来选择理想的膜系设计;通过计算分析了经典四分之一波长膜系的光学特性,包括薄膜膜层的驻波场分布和镀膜过程中的随机误差对膜层反射率曲线的影响,为多层高反膜的化学法制备与实际应用提供了重要依据。  相似文献   

4.
从理论上推导出分布布拉格反射器(DBR)反射率的计算公式,分析了GaN基材料DBR反射率与单层膜折射率、多层膜的对数、单层膜的厚度等的关系,发现20对AlN/GaN构成的1/4波长。DBR的反射率在中心波长410nm下达到了0.9995,分析了DBR反射率随单层厚度波动的影响,并发现随着正偏差的增大,最大反射率对应的波长增大.相同对数AlN/GaN多层膜的反射率比MGaN/GaN多层膜的反射率大,因此,AlN/GaN比AlGaN/GaN更适合做反射器。  相似文献   

5.
用非λ/4膜系的观点设计和制造了冷光膜,给出了非λ/4膜厚冷光膜的光谱反射率曲线,并成功地应用于冷光膜的生产。  相似文献   

6.
宽带反射膜存在着材料折射率有限、反射带宽和反射率不能满足需要、制备过程中薄膜的厚度和折射率难以精确控制等重要的问题。为了满足光学元件对宽光谱反射的要求,采用多个膜堆结构展宽反射带的方法,使用TFCalc优化设计膜系,对膜系结构参数进行不断地改进和调整,设计了带宽为400~900nm、入射角分别为0°和60°的两种全介质多层反射膜并且对其性能进行了分析。结果表明,入射角为0°的宽带反射膜平均反射率达到99.6%,入射角为60°的宽带反射膜平均反射率达到98.6%,这两种反射膜均可以在超宽光谱范围内提高光学仪器的反射率;膜系的中心波长、电场强度分布、平均反射率和反射带宽受入射角度影响,在平均反射率和反射带宽方面,60°入射的膜系比0°入射的膜系受入射角度的影响更大。  相似文献   

7.
本文计算了中心波长为6328埃(Z_nS-MgF_2)、6943埃和1.06微米(后二者均用ZrO_2-SiO_2)的多层介质反射膜对上述三种波长之反射率与入射角的关系,并用氦氖激光对三种膜片进行了测试,发现反射带较窄的ZrO_2-SiO_2高反射膜比反射带较宽的ZnS-MgF_2膜具有更为复杂的曲线。所得结果具有实用价值。  相似文献   

8.
采用了耦合波理论对结构尺度远小于波长的二维亚波长周期光栅进行了讨论,结果表明,这种二维亚波长光栅可等效成一介质层,这介质层具有双折射晶体的性质,文中给出了相应的等效折射率,在此基础上我们采用数值计算的方法分析了在不同入射角情况下该介质层的反射特性,从而给出了抗反膜的设计参数。  相似文献   

9.
本文介绍长波通和短波通截止干涉滤光膜系的选择,并对其通带和截止带的特性进行了计算。采用插入匹配层的方法来提高通带内特定波长的透射率。初步研制结果:长波通截止干涉滤光膜在反射带530nm 处的反射率 R 大于99%,通带1060nm 处的透射率大于97%。短波通截止干涉滤光膜在反射带1060nm 处反射率大于99%,通带530nm 处的透射率大于97%。  相似文献   

10.
讨论了腔内倍频Nd:YAG激光器中的偏振匹配原理以及由于倍频晶体双折射效应所引起的偏振损耗,分析了解决这一矛盾的一种有效方法-腔内插入1.06μm激光的1/4λ波片的基本原理。  相似文献   

11.
讨论了腔内倍频Nd:YAG激光器中的偏振匹配原理以及由于倍频晶体双折射效应所引起的偏振损耗,分析了解决这一矛盾的一种有效方法——腔内插入1.06μm激光的1/4λ波片的基本原理。  相似文献   

12.
采用水热合成技术制备了HfO2胶体,用旋涂法镀制了单层HfO2介质膜.采用多种仪器设备对薄膜进行性能测试和表征,并用输出波长为1.06μm、脉宽为10ns的电光调Q激光系统产生的强激光测试薄膜的激光损伤阈值.研究表明,水热合成技术制备的HfO2薄膜具有较高的激光损伤阈值、折射率和较好的平整度.对HfO2薄膜激光损伤形貌和成因进行了研究.  相似文献   

13.
基于半无限分层介质模型,讨论了具有一定折射率分布的非均匀介质薄膜反射率对入射光的角度依赖关系,得出了其光强反射率公式.在此基础上,通过数值模拟给出不同参数下非均匀介质薄膜的反射率随入射角的变化曲线.分析表明,反射率随入射角的增加呈现出先减小后增大的变化趋势.布儒斯特角随表面折射率、底层折射率、有效深度的增加及膜层厚度减小而增加,随入射波长的变化可以忽略.对于同一入射角,薄膜反射率随薄膜分层厚度增加以及表面折射率、底层折射率和有效深度的减小而减小.  相似文献   

14.
把G=3,N=3的Cantor序列一维光子晶体看作是由光学厚度均为λ0/4的两种介质按分形Cantor序列堆砌27层而成。用5层光学厚度0λ/5的第3种介质替换晶体中第10~15层的低折射率介质后,得到一种新结构的光子晶体。用传输矩阵法研究新结构光子晶体的能带特性,结果表明,新结构光子晶体有更宽的带隙,并在中心波长处出现了一个超窄透射窗口,透射率几乎为100%,当λ0=1 550 nm时,透射窗口的半高宽仅为0.2 nm。晶体的这一特性可用来制作超窄带光子晶体滤波器,在光通信和光学精密测量等技术中有一定的应用价值。  相似文献   

15.
该文根据薄膜理论基础,分析了受抑全内反射的理论机制,导出相应的光线透射率及反射率公式,从透射率,反射率随棱镜相对间隙d/λ、入角角θ0及折射率n的变化曲线可以看出,当间隙从0增加到一个波长量级时,透射率T从100%下降到0;  相似文献   

16.
本对非线性介质中的群速色散效应进行了详细分析,指出群速弥散现象是影响超短激光脉冲其脉宽压缩的重要因素之一.另外计算还表明:腔镜的二、三阶色散在中心频率附近较小、两端较大,并且,其色散量的大小与高低镀膜层折射率之比以及镀膜层数等有关,并在此基础上提出了进一步补偿色散的有效途径.  相似文献   

17.
在采用磁控溅射方法分别制备单层ZnS、MgF_2、SiO_2薄膜及表征其折射率基础上,以折射率逐渐减小的三层结构(HML结构)思想,采用TFC光学薄膜软件,设计并模拟了可用于四结砷化镓(GaInP/GaAs/GaInAs/GaInAs)太阳电池的三层ZnS/MgF_2/SiO_2减反射膜系.并分析模拟了窗口层厚度、各膜层厚度和折射率以及光入射角对有效反射率的影响.结果表明:窗口层厚度、SiO_2的折射率和ZnS膜层厚度对有效反射率R_e的影响最为显著;在350~1 800nm宽波段,当窗口层厚度为83nm,膜系厚度分别为57nm、37nm和88nm,且光入射角为0°时,有效反射率Re最小可达3.38%.  相似文献   

18.
采用矩阵光学计算方法,对多层光学透明薄膜的反射性质进行了讨论,并通过具体的应用设计得到了比较好的结果及有益的结论,即高反射率膜一定是奇数层;四分之一膜系为奇数层时,层数越多,反射率越大;上述膜系的全部结果只适用于单一波长的情况.  相似文献   

19.
在现代光学测试和光学应用中,基于分束镜的分光效率特点,研制出了一种高稳定性的介质消偏振分光膜。光消偏振介质分光薄膜采用了等效折射率和等效厚度的选材方式,并对高低折射率材料的匹配进行了优化处理,得到了高低折射率材料组合的优选结果。发现了中心波长对消偏振分束镜的反射光与透射光影响的因素,探讨了一种低误差灵敏度的高稳定性介质分光膜设计方法,其特点是膜系结构简单,易于批量生产,并研制出较为理想的宽波段与广角度变化的中性介质分光膜。  相似文献   

20.
为了得到宽阻带二阶带通频率选择表面,采用三层金属层结构和两层相等的介质构成频率选择表面的微结构,阐述了宽阻带二阶带通频率选择表面的结构.采用理论计算和HFSS仿真软件进行了仿真设计,窄带理论计算结果和仿真结果一致性较好,均具有二阶带通的频率特性,仿真设计结果具有宽阻带特性,该二阶带通频率微结构单元的容差性和频率稳定性较好.设计了单元尺寸为0.017λ×0.017λ,厚度为λ/59的频率选择表面,其中λ为自由空间的波长.制作实物并测试了频率特性,实测和仿真结果一致性较好,中心频率为0.74 GHz,阻带为0.9~14.9GHz,整个阻带内的抑制度大于15 dB,相对带宽为5%,带内插损小于0.4 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号