共查询到19条相似文献,搜索用时 78 毫秒
1.
粒子滤波器作为常用的非高斯非线性的滤波方法,已成功地应用于各种工程领域。然而传统的重采样方法导致了粒子贫化的问题,严重降低了滤波估计的精度与鲁棒性。文中提出一种结合跟踪失败检测与改进差分优化融合的自复位粒子滤波方法。首先通过跟踪失败识别方法对滤波估计值进行初步检验,在正常跟踪时不启用优化策略,算法性能与标准粒子滤波无异;在跟踪失败时,通过差分算法对粒子集进行复位,复位过程中设置了粒子置信区间的上下界以防粒子过度集中,并结合检验指示值规避对粒子的多次优化,以缩短算法的估计时间。仿真结果表明,文中算法通过动态调节方式继承了标准粒子滤波和差分进化粒子滤波的优点,有效提高了滤波估计的鲁棒性与估计精度,可在滤波成功时避免启用优化策略以降低算法的整体时间复杂度,并在滤波失败时启用差分优化策略进行自我复位以提高算法估计精度;且在相同定位精度下,其所需粒子数较标准粒子滤波更少,整体时耗较差分进化粒子滤波更低,在建模不确定时也可表现出良好的效果。 相似文献
2.
针对非线性非高斯系统的状态估计问题,提出一种新的高精度自适应粒子滤波算法.该算法采用有限差分扩展卡尔曼滤波器产生优选的建议分布函数,融入最新量测信息,有效克服了粒子退化问题;考虑到预测误差对粒子采样效率的影响,引入系统估计和预测提供的新息差值,通过新息差值在线自适应调整采样粒子数,较好地保证了粒子采样的高效性.理论分析... 相似文献
3.
4.
【目的】研究解决传统神经网络手动设计网络结构的局限性,并探究差分进化算法对神经网络优化的有效性。【方法】提出了一种基于差分进化算法的多层前馈神经网络的优化设计方案,用以同时完成神经网络的权值空间和网络结构空间的搜索,给出不同场景下的最优网络结构。该算法采用(1+1)-ES二元进化策略,使用一种新的网络结构交叉和变异方法,通过双种群结构共同进化及自适应变异率等策略加快网络结构的搜索以及算法的收敛。【结果】在预测、分类等问题中,基于差分进化算法的神经网络优化设计能够较好地搜索到最优的神经网络结构,并与传统的BP神经网络以及经典的预测分类算法进行比较,实验结果具有较强的鲁棒性。【结论】基于差分进化算法的神经网络优化设计是解决网络结构寻优问题的有效方法。 相似文献
5.
基于差分进化算法的收敛性分析 总被引:1,自引:0,他引:1
基于差分进化算法的基本原理,采用马尔可夫链分析了该算法的收敛性,论证了该算法能以概率1收敛到全局最优解.利用该算法对3个经典函数进行了数值仿真,结果表明,该算法能够快而有效地收敛到问题的最优解,说明了文章所得结论的正确性. 相似文献
6.
为增强差分进化算法的局部搜索能力,一种新局部搜索策略引入到差分进化算法中,从而提出一种新局部搜索策略的差分进化算法。该算法用局部搜索得到新个体替换较劣个体,使其跳出局部最优,以此增强种群的多样性。数值实验选取4个测试函数,并与差分进化算法进行比较,结果表明算法的有效性。 相似文献
7.
王江涛 《吉林大学学报(理学版)》2015,53(5):999-1005
针对粒子滤波算法在复杂环境下粒子数量显著增加导致跟踪实时性下降的问题,提出一种将背景差分引入到粒子滤波算法中的新算法.利用背景差分对图像处理后得到检测结果,将分布在已被检测为前景像素点上的粒子定义为重要性粒子,增大了其权值.实验结果表明,该算法能使用较少的粒子实现较好的跟踪,提高了跟踪的实时性. 相似文献
8.
提出一类改进的粒子滤波算法.对于建议分布的选取方案,此算法采取强跟踪分散的卡尔曼滤波方式建立它的建议分布.由于线性调节参数,此算法让系统拥有更优越的自适应性及鲁棒性,对高机动目标具有更强的跟踪效果,继而为强跟踪扩展卡尔曼滤波的能力.仿真结论说明,此算法的性能比别的几类非线性滤波算法更加优秀.比如辅助粒子滤波器(APF)、迭代扩展卡尔曼粒子滤波器(IEKF-PF)、Unscented粒子滤波器(UPF)、正则化粒子滤波器(RPF),则是在bootstrap粒子滤波器提出之后,继而出现的改进的粒子滤波器0基于粒子滤波,本文提出了阻止粒子退化的两个重点原因,以及选取合适的采样建议分布及重采样算法. 相似文献
9.
基于择优学习策略的差分进化算法 总被引:1,自引:0,他引:1
传统的差分进化算法在个体变异方面只是利用了随机个体和最优个体的信息.由于选用个体的随机性,导致其搜索效率比较低并且有可能找不到最优解,为此,提出了基于择优学习策略的差分进化算法.该算法选择性地利用种群中比较优秀的个体的信息,克服种群进化过程中的盲目性,增强了搜索能力.通过对多个具有不同特性的标准测试函数进行测试研究,结果表明该方法可以明显减少迭代次数,提高计算效率. 相似文献
10.
李会荣 《海南大学学报(自然科学版)》2013,31(2):143-148
针对标准的差分进化(DE)算法在高维复杂的函数优化中易早熟收敛,进而导致搜索精度低甚至优化失败的问题,提出一种基于单纯形局部搜索的自适应的差分进化算法(SSADE).将DE算法的快速全局搜索能力与单纯形的强局部寻优能力有机结合起来,进一步提高了解的精度.参数自适应变化有效地维持了种群的多样性,自适应的变异策略扩大了个体的搜索范围,增强了算法寻优效果,仿真实验验证了新混合算法的有效性. 相似文献
11.
针对基本粒子群算法易陷入局部极小点、搜索精度不高等缺点,在算法改进方面引用差分演化算法的变异操作提出了差分演化的PSO算法,并用matlab仿真证明该算法的可行性。 相似文献
12.
针对粒子数量和质量对粒子滤波(Particle Filter,PF)的退化问题具有重要影响,从大量采样粒子中采用遗传算法(Genetic Algorithm,GA)获得采样重要性重采样粒子滤波(Sampling Importance Resampling Particle Filter,SIRPF)的初始粒子,改善初始粒子质量,并保证其随机性和统计性.在车辆定位仿真中,采用定位精度、滤波发散次数和计算时间为指标对改进的遗传 粒子滤波算法GA SIRPF和传统SIRPF进行比较.结果表明,GA改进了初始粒子质量,减少了粒子退化可能性,提高了系统定位精度. 相似文献
13.
阈值去噪下的改进粒子滤波算法 总被引:1,自引:0,他引:1
针对粒子滤波在非线性系统上具有优越性,但粒子在传播过程中必然受到噪声影响的问题,提出了在阈值去噪下的改进粒子滤波算法.将小波阈值去噪的思想引入到粒子滤波中,即信号先经过小波包分解,再利用适当的阈值保留分解系数较大者并将系数较小者置为0,这样每个粒子结合其历史信息可降低噪声水平,进而改进滤波的状态估计值.蒙特卡罗仿真实验表明,加入阈值去噪的粒子滤波法可以有效降低滤波的均方根误差,提高滤波精度.在所采用的线性及非线性系统中,均方根误差均值分别降低了14%和12%. 相似文献
14.
基于并行优进策略的差分进化算法 总被引:1,自引:0,他引:1
差分进化算法是一种新颖的进化计算技术,为减少用户选择算法控制参数的盲目性和提高算法收敛速度,设计了一种基于并行优进策略的差分进化算法(DEPES算法).算法随着搜索过程的进行随机动态调整缩放因子和选取差分进化模式;在进行差分操作的并行运算过程中,利用当前代最优个体产生新的试验向量参与竞争选择过程.几个复杂函数的数值实验结果表明,DEPES算法寻优效率高、收敛速度快、对初值具有很强的鲁棒性、对维数具有较好的适应性,尤其是具有避免局部极小的能力,其优化性能优于标准DE算法. 相似文献
15.
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best. 相似文献
16.
基于优化组合重采样的粒子滤波算法 总被引:13,自引:0,他引:13
重采样过程的引入,消除了粒子滤波(PF)过程中的粒子匮乏现象,使PF方法迅速地在多个领域内得到应用,但重采样过程却削弱了粒子的多样性,从而导致滤波性能下降,甚至滤波发散.提出了一种基于优化组合的重采样方法,通过选取粒子和被抛弃粒子的适当线性组合而产生新的粒子,增加了粒子多样性,从而提高PF算法的精度.仿真结果表明,步长系数为零时,该算法等价于基本的PF算法;步长系数很大时,该算法不能收敛;在适当选择步长系数的情况下,该算法的滤波性能高于基本的PF算法.介绍了该重采样算法,仿真结果证明了该算法的有效性. 相似文献
17.
针对复杂水下环境中声探测传感器获得的运动目标信息具有不确定性和模糊性等问题,提出了基于声探测传感器特点的高斯粒子滤波水下目标跟踪方法.基于粒子滤波理论,采用一阶自回归模型作为运动目标状态转移的依据,设计了由目标区域的面积特征和不变矩特征相融合的观测模型,解决了目标跟踪中的粒子权值的选取问题,克服了传统粒子滤波重采样问题,提高了复杂环境下目标跟踪结果的准确率.展示了应用高斯粒子滤波实现水下目标跟踪的过程.试验结果表明,该方法具有较好的鲁棒性和实时性,是复杂水下环境中目标跟踪的一种高效可行的新方法. 相似文献
18.
提出了一种基于改进的粒子滤波的红外视频行人跟踪算法,实现了在传统粒子滤波算法的框架下,使用有向梯度直方图(histograms of oriented gradients,HOG)来描述跟踪目标的特征.算法在粒子权值和相似度计算中使用HOG,替代现有的颜色空间欧式距离测度,克服了红外视频中颜色信息缺失的困难.试验表明,与传统的粒子滤波算法相比,本文算法更能准确有效地跟踪复杂场景中的行人,提高了跟踪的鲁棒性. 相似文献