首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
物性参数对纳米流体强化换热的影响   总被引:1,自引:0,他引:1  
对铜-氩纳米流体在矩形槽通道内流动和换热情况进行了数值模拟,对基础流体和不同体积分数的纳米流体在不同Re下的换热情况进行研究,分析了纳米流体热物性的改变对强化换热的影响.研究表明:相对于基础流体而言纳米流体由于具有较好的导热性能而强化换热,并且纳米流体体积分数越大,其导热性能越好,从而换热能力也越大.对于相同体积分数的纳米流体,其换热系数提高的程度与流体的速度有关系,流速越小,换热系数提高得越大,而随着流速的逐渐增大换热系数提高的程度逐渐下降.  相似文献   

2.
采用数值模拟的方法研究了柱状管内Al_2O_3-H_2O纳米流体低流速的流动特性与换热机理.重点探究三维开口系稳态模型在不同体积分数的纳米颗粒情况下,对流动速度场和温度场的影响以及流动过程中的压降变化,并分析了Al_2O_3纳米颗粒对流动过程中的整体换热的影响.数值模拟结果表明:对于给定的入口流速,随着体积分数的增大,纳米流体各处温度、流动速度明显趋于一致,换热效果增强;压降梯度上升;纳米颗粒的布朗运动是影响换热与流动的主要因素,由于颗粒布朗运动的扰流与混合,各微元状态相互联系增强了流动均匀性.  相似文献   

3.
超临界压力流体在多孔介质内的流动换热问题在动力工程、化学工程、航天航空等领域的应用非常广泛,它是超临界CO_2气冷堆、太阳能热发电系统、超临界压力流体对高温壁面的发汗冷却等工程设计优化的理论基础。分别从实验研究和数值模拟两个方面,详细阐述了多孔介质内超临界压力流体流动换热的研究进展,指出了准临界温度附近强烈物性变化、多孔结构迂曲流动通道、浮升力等因素对换热通道局部对流换热性能的影响规律是深入研究的关键问题。另外由于高温高压实验难度大、数据处理方法较复杂,多孔介质内超临界压力流体与固体骨架之间的内部对流换热系数实验研究非常少,致使局部非热平衡模型在多孔介质内超临界压力流体流动换热数值模拟的应用受到限制,因此同时加强超临界压力流体在多孔介质内流动传热的局部对流换热性能和内部对流换热性能研究,对于多孔介质结构传热性能评价和工业应用关键设备的设计优化具有指导意义。  相似文献   

4.
运用2种多相流模型模拟了纳米流体在细圆管内的强制对流换热特性,并与已有文献的实验值和传统流体经验公式的计算值进行对比.其中,采用混合模型和欧拉模型分析了雷诺数、纳米颗粒体积分数等物理量对换热特性的影响.结果表明:在纳米颗粒体积分数较低时,模拟值与其实验值及经验公式的计算值相差不大;随着纳米颗粒体积分数增加,其非常规的流体特性逐渐突出,当纳米颗粒体积分数达到一定值时,常规的流体经验公式已不再适用,纳米流体换热呈现出一定的多相流特性,且多相流模型的模拟值更接近于其实验值,表明运用多相流模型能够模拟纳米流体的换热特性.  相似文献   

5.
对热电制冷液冷服内纳米流体自然循环的换热特性进行了实验研究.实验采用不同种类的、粒径在20~100 nm范围内的纳米流体,使其在填充有高孔隙率泡沫金属的换热器中被热电制冷元件降温,利用自然循环流动至与换热器连接的盘管中,在盘管中吸收热量,温度升高后再次进入换热器中冷却.将同样粒径和体积分数的Ti O2,Cu O,Cu等颗粒制成的纳米流体与去离子水在特定工况下进行对比实验,结果表明,采用纳米流体可显著增强循环的换热性能,其中Cu纳米流体的强化换热效果最好,制冷功率输出能力比同工况下的去离子水提升25%,系统最大制冷功率输出能力提升95%.针对不同尺寸和浓度的Ti O2纳米流体,研究了其粒径大小、体积分数等对循环过程的流动和换热产生的影响,结果表明,增大纳米颗粒的粒径和体积分数,在一定程度上可以增强其换热性能,但也会带来因团聚堆积增强而产生的堵塞和结冰等问题.  相似文献   

6.
纳米流体作为柴油机冷却系传热介质的数值模拟   总被引:3,自引:0,他引:3  
应用Cu-水纳米流体作为柴油机冷却系传热介质,利用CFD方法对质量浓度为0.5%,1%,3%和5%的Cu-水纳米流体在柴油机冷却水套内的流动和换热过程进行三维数值模拟.并采用湍流随机跟踪方法,对固液两相流离散项纳米粒子的运动进行轨迹追踪,得到了不同质量浓度纳米流体Cu粒子在柴油机水套内的浓度场分布、速度场分布、内能变化、停留时间、换热总量以及水套进、出口之间的压降变化计算结果表明,以Cu-水纳米流体作为传热介质可以显著提高柴油机的散热性能,随着纳米粒子浓度的增加,柴油机散热能力增强,水泵功率损失小范围增加,Cu粒子在水套内的平均停留时间与其浓度相关性不明显,换热效率与纳米流体的流速相关性不明显.  相似文献   

7.
基于双分布函数模型方法,建立了一个模拟伴随有液相自然对流的纳米复合相变材料融化传热过程的格子Boltzmann方程模型.其中温度分布函数方程的构建采用直接基于焓方程的方法 ,避免传统方法需要迭代处理源项,提高了计算效率.应用该模型对方腔内纳米流体自然对流传热过程进行模拟,模拟结果与文献结果吻合较好;在此基础上对纳米复合相变材料融化过程进行模拟.结果表明,有效黏度系数的变化对纳米复合相变材料融化传热有着至关重要的影响,偏高的黏度系数可能会抑制纳米流体相变换热过程.此外,在给定的纳米粒子体积份额情况下,区域相变材料融化传热性能随Rayleigh数的增大而增强.  相似文献   

8.
利用数值模拟软件CFX建立氧化铝纳米流体沸腾换热模拟简化模型,研究氧化铝纳米流体作为冷却液以改善缸盖鼻梁区换热效果问题;选取粒径为20、40、60 nm流体,每种流体设置质量分数为3%、5%、10%和20%等4组实验,外加纯基液进行对比,共13种纳米流体,研究其在简化模型中的冷却效果,分析火力面侧的气泡分布和热流密度,同时探讨传热强化的原因以及粒径和质量分数对传热的影响。模拟结果表明,氧化铝纳米流体均能够强化该区域的沸腾换热,纳米颗粒与基液的对流换热以及纳米颗粒与壁面的接触换热均使传热得到强化,且粒径和质量分数越大,强化传热效果越好。  相似文献   

9.
扩缩通道内流动和换热非线性特性的数值模拟   总被引:2,自引:2,他引:0  
对扩缩通道内流动与换热进行了数值模拟并探讨了其中的非线性特性.通过对不同突扩比ER、不同长宽比AR及不同雷诺数Re下通道内流场和温度场进行分析,给出在一定工况下对称通道内流体的流动和换热会出现偏斜等非线性现象的情况.数值模拟结果表明,存在临界雷诺数Rec使流体流动和换热形态发生转变,当Re超过Rec时,流体流动和换热不仅有对称解,还有非对称解;当Re继续增大时,流体流动和换热出现振荡.通道的几何尺寸及后缩段(表现为ER及AR)都对Rec产生影响.分析结果表明,当Re超过临界雷诺数Rec时,同一截面处上下壁面的局部努塞尔数Nu也由对称向非对称转变,上下壁面出现最大局部Nu的位置也不同.  相似文献   

10.
建立了描述纳米流体流动与传热过程的格子-Boltzmann模型,针对格子-Boltzmann方法(LBM)高度并行性的特点,用消息传递机制实现了平板间纳米流体流动与传热过程的LBM并行计算,分析了处理器数目与区域分解模式对计算效率的影响。结果表明,纳米粒子的微运动强化了流体与壁面以及流体内部的换热过程,LBM并行计算方法应用于纳米流体流动传热计算能够提高计算效率。  相似文献   

11.
利用数值模拟方法,在不同雷诺数下研究了不同放缩比的三角型通道内周期性充分发展的层流流动和换热特性,分析了放缩比和雷诺数对流动与换热的影响.结果表明,当放缩比越小或越大时,流体都容易产生旋涡;随着雷诺数的增大,流体在各种放缩比通道中的阻力系数都是减小的,而换热速率在不同放缩比时随雷诺数的变化是不同的.  相似文献   

12.
随着科技的进步,热交换设备的热负荷与传热强度不断增大,传统的醇类冷却剂不足以满足换热设备的冷却要求,通过向传统醇类冷却剂中加入Cu纳米粒子从而形成Cu-醇基纳米流体。对Cu-乙醇、Cu-乙二醇、Cu-丙二醇三种Cu-醇基纳米流体在波壁管中的换热特性进行数值模拟研究,同时采用分子动力学计算了Cu-醇基纳米流体的导热系数,分析了雷诺数Re与纳米颗粒体积分数φ对纳米流体的换热特性的影响。结果表明,在相同条件下,纳米流体的导热系数比基液大,且随着φ的增加而增大,通过比较这三种Cu-醇基纳米流体的导热系数,发现Cu-丙二醇纳米流体的导热系数的增幅最大;同时发现纳米流体的对流换热系数与基液相比有所提高,且随着φ的增加而增大;Cu-醇基纳米流体在强化传热的同时也会产生更大的阻力损失,且该损失随着φ的增大而增大;用性能评价因子PEC对波壁管内流体的对流换热系数与摩擦阻力系数进行综合分析。发现在三种Cu-醇基纳米流体中,Cu-丙二醇纳米流体具有最好的综合换热性能。  相似文献   

13.
为了研究换热器螺旋管的冷凝传热性能,对R22制冷剂使用VOF模型在螺旋直径为300mm、螺距为19.52mm、管道直径为9.52mm的换热器螺旋管进行了数值模拟,分析了换热器螺旋管的流场分布特性,研究了流体流速和饱和温度对螺旋管内换热性能的影响。通过实验研究了不同参数对螺旋管内换热性能的影响,对数值模拟的准确性进行验证。实验结果表明,在不同流体流速时冷凝换热系数的模拟数据与实验数据之间的相对误差为3%-11%,在不同饱和温度时冷凝换热系数的模拟数据与实验数据之间的相对误差为3%-8%,说明数值模拟方法和结果是合理的。该研究为螺旋管换热器的设计优化以及空调热水器一体机的节能损耗给予了一些参考。  相似文献   

14.
为了得到非清洁水换热管内振荡流动的除垢性能,研究了有无振荡干预下非清洁水源热泵换热器管内的流动和传热情况。建立恒热流条件下圆管内振荡流动的物理模型,针对不同工况进行数值模拟。模拟结果显示,振荡流动能够明显增大流体对于壁面的剪切力,在5Hz和10Hz情况下能够增大流体和壁面间的平均表面换热系数,1Hz情况下平均表面换热系数变化不明显。在1Hz实验工况下搭建了试验台进行实验研究,实验结果表明,实验工况条件下,振荡对于换热器管内表面换热系数的影响较小,但是剪切力的增大造成部分污垢沉积物脱落,减小了污垢热阻从而使换热器的传热系数增加了22.2%,因此振荡可以作为换热管内除垢的一种有效方式。  相似文献   

15.
传统的直壁管式换热器的换热效率不高,为了增强换热器内流体的换热效率。采用数值模拟的方法对<1-2>型波壁管式换热器内流体的流动与换热特性进行了研究,重点探讨了雷诺数Re与波壁管半径比i对换热器内流体的流动特性、阻力特性、换热特性以及综合换热性能的影响。结果发现,与直壁管式换热器相比,波壁管式换热器内流体的流动状态能够得到较大的改善。波壁管式换热器壳程流体的进出口平均压降比直壁管式换热器低,平均压降最大可降低11.01%,并且发现随着Re的增加,平均压降明显增大,随着i的增加,平均压降略有增大。波壁管式换热器壳程内流体的对流换热系数hs明显大于直壁管式换热器,hs最大可增加14.17%。hs随着Re的增大逐渐增加,而i对hs的影响不明显。同时发现波壁管式换热器的综合换热性能与雷诺数Re成正相关,而与半径比i成负相关。与直壁管式换热器相比,波壁管式换热器的综合换热性能更强。  相似文献   

16.
提出了一种新型纳米流体的的概念,该纳米流体既有减阻流体的减阻特性,又因为添加了碳纳米管(CNT)而具有很好的的强化换热特性.探索合适的配比组分和配制工艺,试制了带有减阻特性的水基碳纳米管纳米流体(悬浮液),测定了其热物理和流变特性.试验表明,液温对减阻特性和换热特性都有强烈影响;添加CNT前后的减阻流体的减阻性能基本不变,但传热性能明显提高;使用带有减阻特性的纳米流体能够提高强制对流的综合换热特性或进一步提高纳米流体的强化传热特性.  相似文献   

17.
运用多相流混合模型和单相流模型模拟了纳米流体在封闭腔体内的自然对流换热特性,将模拟结果与相应的实验值进行对比,分析了瑞利数、格拉晓夫数和纳米颗粒体积分数等物理量与努塞尔数的关系;同时,对比分析了纳米流体和纯水在水平与垂直中心截面的速度分布,以及封闭腔体内流体的温度场及流场.结果表明:基于N-S方程的单相流模型所得努塞尔数变化曲线与水的努塞尔数曲线较吻合,但不能反应纳米流体的换热特性;而基于多相流混合模型所得努塞尔数变化曲线与相应的实验结果较吻合;纳米颗粒的添加能够显著增强封闭腔体内的流体运动,有利于强化封闭腔体内流体的能量传输,起到了对流换热作用.  相似文献   

18.
以去离子水和水基铜纳米流体为工质,对一种铜丝丝网平板热管的传热特性进行了实验研究.分析了不同工作压力、不同工质和纳米流体质量分数对铜丝丝网平板热管传热性能的影响,并与单一铜丝平板热管的换热性能进行了比较.结果表明:纳米流体在低压条件下可以显著提高热管的换热特性,是一种适用于平板热管的新型工质;在使用水和纳米流体2种工质的实验中,铜丝丝网平板热管的各项换热功能指标均优于铜丝平板热管,并且热管热阻明显降低,最大功率也明显增加.  相似文献   

19.
低传热性能的换热工质已成为目前开发新一代高效换热器的主要障碍.纳米粒子制备技术的迅速发展,使得传统的纯液体传热工质中添加高导热系数的纳米粒子,制成稳定的纳米流体成为可能.纳米流体作为一种新型的高效传热工质日益受到热科学技术领域研究人员的高度关注,在过去20年里做了大量的研究工作,目前已经在下述几个方面取得了突破性的研究进展:1)建立了纳米流体导热系数的理论模型,纳米流体表观导热系数的计算公式逐渐得到认可.2)通过大量的实验研究,归纳总结了很多种类纳米流体导热系数的基本实验数据.3)建立了基于微对流和微扩散效应的纳米流体对流换热准则关联式.4)纳米流体在矩形空间的自然对流传热的数值模拟和池内沸腾换热的实验研究取得了较大进展.本文主要对以上几个方面的最新研究成果做了综述,最后对纳米流体强化传热技术的研究进展和存在问题进行了总结和展望.  相似文献   

20.
不同相位差正弦型波纹通道内流动与换热特性的数值研究   总被引:4,自引:0,他引:4  
研究了流体在不同相位差的正弦型波纹通道内周期性充分发展的层流流动特征及强化换热特性,利用数值模拟方法探讨了波纹上、下板相位差对流动与换热的影响.计算结果表明:对于不同相位差的通道在当量直径与入口质量流量分别相同的条件下,流动与换热特性与Re的范围有关,上、下波纹板相位差为0°与180°时通道的阻力较高,相位差为30°时通道的阻力最低,同时也以相位差为0°时通道表面的换热速率最高,相位差为30°时通道表面的换热速率相对较低,即表面换热性能的改善要以压力损失的增大为代价.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号